See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: microsoft/phi-1_5
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 2aedd21f4074101a_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/2aedd21f4074101a_train_data.json
type:
field_input: sum
field_instruction: title
field_output: text
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: ardaspear/dbb615ce-eba4-46d6-bf0e-593f0f7bcc3b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 72GB
max_steps: 50
micro_batch_size: 4
mlflow_experiment_name: /tmp/2aedd21f4074101a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: dbb615ce-eba4-46d6-bf0e-593f0f7bcc3b
wandb_project: Gradients-On-Two
wandb_run: your_name
wandb_runid: dbb615ce-eba4-46d6-bf0e-593f0f7bcc3b
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
dbb615ce-eba4-46d6-bf0e-593f0f7bcc3b
This model is a fine-tuned version of microsoft/phi-1_5 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.6907
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0002 | 1 | 4.6629 |
4.6457 | 0.0008 | 5 | 4.4790 |
4.4122 | 0.0016 | 10 | 4.2862 |
4.1212 | 0.0024 | 15 | 4.1249 |
4.0048 | 0.0033 | 20 | 3.9966 |
3.941 | 0.0041 | 25 | 3.8880 |
3.8418 | 0.0049 | 30 | 3.8029 |
3.8492 | 0.0057 | 35 | 3.7443 |
3.7409 | 0.0065 | 40 | 3.7085 |
3.6818 | 0.0073 | 45 | 3.6935 |
3.7544 | 0.0082 | 50 | 3.6907 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 42
Model tree for ardaspear/dbb615ce-eba4-46d6-bf0e-593f0f7bcc3b
Base model
microsoft/phi-1_5