See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: TinyLlama/TinyLlama_v1.1
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 9ea43b1347cf8a61_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/9ea43b1347cf8a61_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: ardaspear/e06cc970-900f-4c24-8ad4-1b16cc96e0db
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 72GB
max_steps: 100
micro_batch_size: 4
mlflow_experiment_name: /tmp/9ea43b1347cf8a61_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: e06cc970-900f-4c24-8ad4-1b16cc96e0db
wandb_project: Gradients-On-Two
wandb_run: your_name
wandb_runid: e06cc970-900f-4c24-8ad4-1b16cc96e0db
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
e06cc970-900f-4c24-8ad4-1b16cc96e0db
This model is a fine-tuned version of TinyLlama/TinyLlama_v1.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9730
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0007 | 1 | 1.4287 |
1.2206 | 0.0059 | 9 | 1.2039 |
1.1016 | 0.0118 | 18 | 1.0844 |
1.0125 | 0.0176 | 27 | 1.0380 |
0.9891 | 0.0235 | 36 | 1.0137 |
0.997 | 0.0294 | 45 | 0.9985 |
0.974 | 0.0353 | 54 | 0.9874 |
1.0105 | 0.0412 | 63 | 0.9818 |
0.9499 | 0.0470 | 72 | 0.9770 |
0.9495 | 0.0529 | 81 | 0.9744 |
0.9092 | 0.0588 | 90 | 0.9733 |
0.9768 | 0.0647 | 99 | 0.9730 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 19
Model tree for ardaspear/e06cc970-900f-4c24-8ad4-1b16cc96e0db
Base model
TinyLlama/TinyLlama_v1.1