arjun
End of training
09df096 verified
metadata
language:
  - ml
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small Malayalam - Arjun Shaji
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: ml
          split: None
          args: 'config: ml, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 81.60919540229885

Whisper Small Malayalam - Arjun Shaji

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7363
  • Wer: 81.6092

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0433 18.5185 500 0.5265 94.7126
0.0144 37.0370 1000 0.5352 89.1954
0.0057 55.5556 1500 0.5989 87.5862
0.0004 74.0741 2000 0.6575 82.0690
0.0 92.5926 2500 0.6616 81.6092
0.0 111.1111 3000 0.6911 81.3793
0.0 129.6296 3500 0.7097 81.3793
0.0 148.1481 4000 0.7232 81.3793
0.0 166.6667 4500 0.7327 81.3793
0.0 185.1852 5000 0.7363 81.6092

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1