arjunshajitech's picture
End of training
5f4b96c verified
metadata
language:
  - ml
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Small Malayalam - Arjun Shaji
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: ml_in
          split: None
          args: 'config: ml, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 52.33970351848545

Whisper Small Malayalam - Arjun Shaji

This model is a fine-tuned version of openai/whisper-small on the google/fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1677
  • Wer: 52.3397

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0239 5.1020 1000 0.1136 54.3847
0.002 10.2041 2000 0.1426 52.9827
0.0003 15.3061 3000 0.1584 52.5808
0.0001 20.4082 4000 0.1643 52.3129
0.0001 25.5102 5000 0.1677 52.3397

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1