Edit model card

distilbert-base-uncased-text-classification-v6

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2704
  • F1: 0.8474

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1
1.3969 1.0 569 0.6767 0.4906
0.6361 2.0 1138 0.4067 0.7038
0.3966 3.0 1707 0.3094 0.7988
0.2509 4.0 2276 0.2744 0.8339
0.1678 5.0 2845 0.2704 0.8474
0.126 6.0 3414 0.2810 0.8530
0.098 7.0 3983 0.3025 0.8582
0.0722 8.0 4552 0.2982 0.8556
0.0631 9.0 5121 0.3026 0.8597
0.0581 10.0 5690 0.3059 0.8614
0.0615 11.0 6259 0.3016 0.8623
0.0567 12.0 6828 0.3108 0.8608
0.0572 13.0 7397 0.3072 0.8577
0.0469 14.0 7966 0.3147 0.8563
0.0493 15.0 8535 0.3229 0.8637
0.0477 16.0 9104 0.3183 0.8705
0.0482 17.0 9673 0.3212 0.8676
0.0442 18.0 10242 0.3193 0.8667
0.0432 19.0 10811 0.3224 0.8665
0.0409 20.0 11380 0.3220 0.8663

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.13.3
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.