coref-ua / README.md
artemkramov's picture
Update README.md
14891d6
metadata
datasets:
  - artemkramov/coreference-dataset-ua
language:
  - uk
tags:
  - coreference-resolution
  - anaphora
widget:
  - text: Jens Peter Hansen kommer fra Danmark
    example_title: Coreference resolution
model-index:
  - name: test
    results:
      - task:
          type: coreference-resolution
          name: Coreference resolution
        dataset:
          type: artemkramov/coreference-dataset-ua
          name: Silver Ukrainian Coreference Resolution Dataset
        metrics:
          - type: coval
            value: 0.731
            name: Mean F1 measure of MUC, BCubed, and CEAFE

Coreference resolution model for the Ukrainian language

The coreference resolution model for the Ukrainian language was trained on the silver Ukrainian coreference dataset using the F-Coref library. The model was trained on top of the XML-Roberta-base model.

Model Details

Model Description

Model Sources

Out-of-Scope Use

According to the metrics retrieved from the evaluation dataset, the model is more precision-oriented. Also, there is a high level of granularity of mentions. E.g., the mention "Головний виконавчий директор Андрій Сидоренко" can be divided into the following coreferent groups: ["Головний виконавчий директор Андрій Сидоренко", "Головний виконавчий директор", "Андрій Сидоренко"]. Such a feature can also be used to extract some positions, roles, or other features of entities in the text.

How to Get Started with the Model

Use the code below to get started with the model.

from fastcoref import FCoref
import spacy

nlp = spacy.load('uk_core_news_md')

model_path = "artemkramov/coref-ua"
model = FCoref(model_name_or_path=model_path, device='cuda:0', nlp=nlp)

preds = model.predict(
   texts=["""Мій друг дав мені свою машину та ключі до неї; крім того, він дав мені його книгу. Я з радістю її читаю."""]
)

preds[0].get_clusters(as_strings=False)
> [[(0, 3), (13, 17), (66, 70), (83, 84)],
 [(0, 8), (18, 22), (58, 61), (71, 75)],
 [(18, 29), (42, 45)],
 [(71, 81), (95, 97)]]

preds[0].get_clusters()
> [['Мій', 'мені', 'мені', 'Я'], ['Мій друг', 'свою', 'він', 'його'], ['свою машину', 'неї'], ['його книгу', 'її']]

preds[0].get_logit(
   span_i=(13, 17), span_j=(42, 45)
)

> -6.867196

Training Details

Training Data

The model was trained on the silver coreference resolution dataset: https://huggingface.co/datasets/artemkramov/coreference-dataset-ua.

Evaluation

Metrics

Two types of metrics were considered: mention-based and the coreference resolution metrics themselves.

Mention-based metrics:

  • mention precision
  • mention recall
  • mention F1

Coreference resolution metrics were calculated as the average values across the following metrics: MUC, BCubed, CEAFE:

  • coreference precision
  • coreference recall
  • coreference F1

Results

The metrics for the validation dataset:

Metric Value
Mention precision 0.850
Mention recall 0.798
Mention F1 0.824
Coreference precision 0.758
Coreference recall 0.706
Coreference F1 0.731

Model Card Authors

Artem Kramov (https://www.linkedin.com/in/artem-kramov-0b3731100/), Andrii Kursin (aqrsn@ukr.net)