artificialguybr's picture
Upload folder using huggingface_hub
5dfa501 verified
|
raw
history blame
3.03 kB
metadata
license: other
base_model: NousResearch/Meta-Llama-3-8B
tags:
  - generated_from_trainer
model-index:
  - name: out-llama8b-alpaca-data-pt-br
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: NousResearch/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: dominguesm/alpaca-data-pt-br
    type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./out-llama8b-alpaca-data-pt-br

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

wandb_project: meta-llama-8b-sql-create-context
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|end_of_text|>

out-llama8b-alpaca-data-pt-br

This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1227

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
1.382 0.01 1 1.4056
1.1762 0.5 45 1.1987
1.1294 0.99 90 1.1493
1.0028 1.47 135 1.1331
0.9899 1.97 180 1.1227

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.2.2+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0