whisper-base-tl-1 / README.md
arun100's picture
End of training
42663cd verified
metadata
license: apache-2.0
base_model: openai/whisper-base
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Base Tagalog
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs fil_ph
          type: google/fleurs
          config: fil_ph
          split: test
          args: fil_ph
        metrics:
          - name: Wer
            type: wer
            value: 30.810565352304547

Whisper Base Tagalog

This model is a fine-tuned version of openai/whisper-base on the google/fleurs fil_ph dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7222
  • Wer: 30.8106

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5804 38.0 500 0.7836 36.0478
0.1934 76.0 1000 0.6861 31.5220
0.0589 115.0 1500 0.7040 32.4415
0.0251 153.0 2000 0.7222 30.8106
0.0154 192.0 2500 0.7362 31.3593
0.0109 230.0 3000 0.7470 31.7604
0.0085 269.0 3500 0.7562 31.7112
0.0071 307.0 4000 0.7630 31.9874
0.0064 346.0 4500 0.7675 32.0064
0.0061 384.0 5000 0.7692 32.0669

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0