acge model
acge模型来自于合合信息技术团队,对外技术试用平台TextIn, github开源链接为github。合合信息是行业领先的人工智能及大数据科技企业,致力于通过智能文字识别及商业大数据领域的核心技术、C端和B端产品以及行业解决方案为全球企业和个人用户提供创新的数字化、智能化服务。
技术交流请联系yanhui_he@intsig.net,商务合作请联系simon_liu@intsig.net,可以点击图片,扫面二维码来加入我们的微信社群。想加入合合信息,做“文档解析”、“文档检索”、“文档预研”的同学可以投简历给min_du@intsig.net,也可直接添加HR微信详聊岗位内容。
acge是一个通用的文本编码模型,是一个可变长度的向量化模型,使用了Matryoshka Representation Learning,如图所示:
建议使用的维度为1024或者1792
Model Name | Model Size (GB) | Dimension | Sequence Length | Language | Need instruction for retrieval? |
---|---|---|---|---|---|
acge-text-embedding | 0.65 | [1024, 1792] | 1024 | Chinese | NO |
Metric
C-MTEB leaderboard (Chinese)
测试的时候因为数据的随机性、显卡、推理的数据类型导致每次推理的结果不一致,我总共测试了4次,不同的显卡(A10 A100),不同的数据类型,测试结果放在了result文件夹中,选取了一个精度最低的测试作为最终的精度测试。 根据infgrad的建议,选取不用的输入的长度作为测试,Sequence Length为512时测试最佳。
Model Name | GPU | tensor-type | Model Size (GB) | Dimension | Sequence Length | Average (35) | Classification (9) | Clustering (4) | Pair Classification (2) | Reranking (4) | Retrieval (8) | STS (8) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
acge_text_embedding | NVIDIA TESLA A10 | bfloat16 | 0.65 | 1792 | 1024 | 68.91 | 72.76 | 58.22 | 87.82 | 67.67 | 72.48 | 62.24 |
acge_text_embedding | NVIDIA TESLA A100 | bfloat16 | 0.65 | 1792 | 1024 | 68.91 | 72.77 | 58.35 | 87.82 | 67.53 | 72.48 | 62.24 |
acge_text_embedding | NVIDIA TESLA A100 | float16 | 0.65 | 1792 | 1024 | 68.99 | 72.76 | 58.68 | 87.84 | 67.89 | 72.49 | 62.24 |
acge_text_embedding | NVIDIA TESLA A100 | float32 | 0.65 | 1792 | 1024 | 68.98 | 72.76 | 58.58 | 87.83 | 67.91 | 72.49 | 62.24 |
acge_text_embedding | NVIDIA TESLA A100 | float16 | 0.65 | 1792 | 768 | 68.95 | 72.76 | 58.68 | 87.84 | 67.86 | 72.48 | 62.07 |
acge_text_embedding | NVIDIA TESLA A100 | float16 | 0.65 | 1792 | 512 | 69.07 | 72.75 | 58.7 | 87.84 | 67.99 | 72.93 | 62.09 |
Reproduce our results
C-MTEB:
import torch
import argparse
import functools
from C_MTEB.tasks import *
from typing import List, Dict
from sentence_transformers import SentenceTransformer
from mteb import MTEB, DRESModel
class RetrievalModel(DRESModel):
def __init__(self, encoder, **kwargs):
self.encoder = encoder
def encode_queries(self, queries: List[str], **kwargs) -> np.ndarray:
input_texts = ['{}'.format(q) for q in queries]
return self._do_encode(input_texts)
def encode_corpus(self, corpus: List[Dict[str, str]], **kwargs) -> np.ndarray:
input_texts = ['{} {}'.format(doc.get('title', ''), doc['text']).strip() for doc in corpus]
input_texts = ['{}'.format(t) for t in input_texts]
return self._do_encode(input_texts)
@torch.no_grad()
def _do_encode(self, input_texts: List[str]) -> np.ndarray:
return self.encoder.encode(
sentences=input_texts,
batch_size=512,
normalize_embeddings=True,
convert_to_numpy=True
)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name_or_path', default="acge_text_embedding", type=str)
parser.add_argument('--task_type', default=None, type=str)
parser.add_argument('--pooling_method', default='cls', type=str)
parser.add_argument('--output_dir', default='zh_results',
type=str, help='output directory')
parser.add_argument('--max_len', default=1024, type=int, help='max length')
return parser.parse_args()
if __name__ == '__main__':
args = get_args()
encoder = SentenceTransformer(args.model_name_or_path).half()
encoder.encode = functools.partial(encoder.encode, normalize_embeddings=True)
encoder.max_seq_length = int(args.max_len)
task_names = [t.description["name"] for t in MTEB(task_types=args.task_type,
task_langs=['zh', 'zh-CN']).tasks]
TASKS_WITH_PROMPTS = ["T2Retrieval", "MMarcoRetrieval", "DuRetrieval", "CovidRetrieval", "CmedqaRetrieval",
"EcomRetrieval", "MedicalRetrieval", "VideoRetrieval"]
for task in task_names:
evaluation = MTEB(tasks=[task], task_langs=['zh', 'zh-CN'])
if task in TASKS_WITH_PROMPTS:
evaluation.run(RetrievalModel(encoder), output_folder=args.output_dir, overwrite_results=False)
else:
evaluation.run(encoder, output_folder=args.output_dir, overwrite_results=False)
Usage
acge 中文系列模型
在sentence-transformer库中的使用方法:
from sentence_transformers import SentenceTransformer
sentences = ["数据1", "数据2"]
model = SentenceTransformer('acge_text_embedding')
print(model.max_seq_length)
embeddings_1 = model.encode(sentences, normalize_embeddings=True)
embeddings_2 = model.encode(sentences, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
在sentence-transformer库中的使用方法,选取不同的维度:
from sklearn.preprocessing import normalize
from sentence_transformers import SentenceTransformer
sentences = ["数据1", "数据2"]
model = SentenceTransformer('acge_text_embedding')
embeddings = model.encode(sentences, normalize_embeddings=False)
matryoshka_dim = 1024
embeddings = embeddings[..., :matryoshka_dim] # Shrink the embedding dimensions
embeddings = normalize(embeddings, norm="l2", axis=1)
print(embeddings.shape)
# => (2, 1024)
- Downloads last month
- 170,164
Model tree for aspire/acge_text_embedding
Spaces using aspire/acge_text_embedding 4
Evaluation results
- cos_sim_pearson on MTEB AFQMCvalidation set self-reported54.034
- cos_sim_spearman on MTEB AFQMCvalidation set self-reported58.807
- euclidean_pearson on MTEB AFQMCvalidation set self-reported57.472
- euclidean_spearman on MTEB AFQMCvalidation set self-reported58.808
- manhattan_pearson on MTEB AFQMCvalidation set self-reported57.463
- manhattan_spearman on MTEB AFQMCvalidation set self-reported58.802
- cos_sim_pearson on MTEB ATECtest set self-reported53.526
- cos_sim_spearman on MTEB ATECtest set self-reported57.945
- euclidean_pearson on MTEB ATECtest set self-reported61.170
- euclidean_spearman on MTEB ATECtest set self-reported57.946