update Sequence Length
Browse files
README.md
CHANGED
@@ -18,17 +18,17 @@ model-index:
|
|
18 |
revision: b44c3b011063adb25877c13823db83bb193913c4
|
19 |
metrics:
|
20 |
- type: cos_sim_pearson
|
21 |
-
value: 54.
|
22 |
- type: cos_sim_spearman
|
23 |
-
value: 58.
|
24 |
- type: euclidean_pearson
|
25 |
-
value: 57.
|
26 |
- type: euclidean_spearman
|
27 |
-
value: 58.
|
28 |
- type: manhattan_pearson
|
29 |
-
value: 57.
|
30 |
- type: manhattan_spearman
|
31 |
-
value: 58.
|
32 |
- task:
|
33 |
type: STS
|
34 |
dataset:
|
@@ -39,17 +39,17 @@ model-index:
|
|
39 |
revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
|
40 |
metrics:
|
41 |
- type: cos_sim_pearson
|
42 |
-
value: 53.
|
43 |
- type: cos_sim_spearman
|
44 |
-
value: 57.
|
45 |
- type: euclidean_pearson
|
46 |
-
value: 61.
|
47 |
- type: euclidean_spearman
|
48 |
-
value: 57.
|
49 |
- type: manhattan_pearson
|
50 |
-
value: 61.
|
51 |
- type: manhattan_spearman
|
52 |
-
value: 57.
|
53 |
- task:
|
54 |
type: Classification
|
55 |
dataset:
|
@@ -60,9 +60,9 @@ model-index:
|
|
60 |
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
61 |
metrics:
|
62 |
- type: accuracy
|
63 |
-
value: 48.
|
64 |
- type: f1
|
65 |
-
value: 46.
|
66 |
- task:
|
67 |
type: STS
|
68 |
dataset:
|
@@ -73,17 +73,17 @@ model-index:
|
|
73 |
revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
|
74 |
metrics:
|
75 |
- type: cos_sim_pearson
|
76 |
-
value: 68.
|
77 |
- type: cos_sim_spearman
|
78 |
-
value: 70.
|
79 |
- type: euclidean_pearson
|
80 |
-
value: 69.
|
81 |
- type: euclidean_spearman
|
82 |
-
value: 70.
|
83 |
- type: manhattan_pearson
|
84 |
-
value: 69.
|
85 |
- type: manhattan_spearman
|
86 |
-
value: 70.
|
87 |
- task:
|
88 |
type: Clustering
|
89 |
dataset:
|
@@ -94,7 +94,7 @@ model-index:
|
|
94 |
revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
|
95 |
metrics:
|
96 |
- type: v_measure
|
97 |
-
value:
|
98 |
- task:
|
99 |
type: Clustering
|
100 |
dataset:
|
@@ -105,7 +105,7 @@ model-index:
|
|
105 |
revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
|
106 |
metrics:
|
107 |
- type: v_measure
|
108 |
-
value: 44.
|
109 |
- task:
|
110 |
type: Reranking
|
111 |
dataset:
|
@@ -116,9 +116,9 @@ model-index:
|
|
116 |
revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
|
117 |
metrics:
|
118 |
- type: map
|
119 |
-
value: 88.
|
120 |
- type: mrr
|
121 |
-
value: 90.
|
122 |
- task:
|
123 |
type: Reranking
|
124 |
dataset:
|
@@ -129,9 +129,9 @@ model-index:
|
|
129 |
revision: 23d186750531a14a0357ca22cd92d712fd512ea0
|
130 |
metrics:
|
131 |
- type: map
|
132 |
-
value: 88.
|
133 |
- type: mrr
|
134 |
-
value:
|
135 |
- task:
|
136 |
type: Retrieval
|
137 |
dataset:
|
@@ -142,65 +142,65 @@ model-index:
|
|
142 |
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
|
143 |
metrics:
|
144 |
- type: map_at_1
|
145 |
-
value: 26.
|
146 |
- type: map_at_10
|
147 |
-
value: 39.
|
148 |
- type: map_at_100
|
149 |
-
value: 41.
|
150 |
- type: map_at_1000
|
151 |
-
value:
|
152 |
- type: map_at_3
|
153 |
-
value: 35.
|
154 |
- type: map_at_5
|
155 |
-
value: 38.
|
156 |
- type: mrr_at_1
|
157 |
-
value: 40.
|
158 |
- type: mrr_at_10
|
159 |
-
value: 48.
|
160 |
- type: mrr_at_100
|
161 |
-
value: 49.
|
162 |
- type: mrr_at_1000
|
163 |
-
value: 49.
|
164 |
- type: mrr_at_3
|
165 |
-
value: 46.
|
166 |
- type: mrr_at_5
|
167 |
-
value: 47.
|
168 |
- type: ndcg_at_1
|
169 |
-
value: 40.
|
170 |
- type: ndcg_at_10
|
171 |
-
value: 46.
|
172 |
- type: ndcg_at_100
|
173 |
-
value: 53.
|
174 |
- type: ndcg_at_1000
|
175 |
-
value: 55.
|
176 |
- type: ndcg_at_3
|
177 |
-
value:
|
178 |
- type: ndcg_at_5
|
179 |
-
value: 43.
|
180 |
- type: precision_at_1
|
181 |
-
value: 40.
|
182 |
- type: precision_at_10
|
183 |
-
value: 10.
|
184 |
- type: precision_at_100
|
185 |
value: 1.625
|
186 |
- type: precision_at_1000
|
187 |
value: 0.184
|
188 |
- type: precision_at_3
|
189 |
-
value: 23.
|
190 |
- type: precision_at_5
|
191 |
-
value: 17.
|
192 |
- type: recall_at_1
|
193 |
-
value: 26.
|
194 |
- type: recall_at_10
|
195 |
-
value: 57.
|
196 |
- type: recall_at_100
|
197 |
-
value: 87.
|
198 |
- type: recall_at_1000
|
199 |
-
value: 98.
|
200 |
- type: recall_at_3
|
201 |
-
value: 40.
|
202 |
- type: recall_at_5
|
203 |
-
value: 48.
|
204 |
- task:
|
205 |
type: PairClassification
|
206 |
dataset:
|
@@ -211,51 +211,51 @@ model-index:
|
|
211 |
revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
|
212 |
metrics:
|
213 |
- type: cos_sim_accuracy
|
214 |
-
value: 83.
|
215 |
- type: cos_sim_ap
|
216 |
-
value: 90.
|
217 |
- type: cos_sim_f1
|
218 |
-
value: 84.
|
219 |
- type: cos_sim_precision
|
220 |
-
value:
|
221 |
- type: cos_sim_recall
|
222 |
-
value:
|
223 |
- type: dot_accuracy
|
224 |
-
value: 83.
|
225 |
- type: dot_ap
|
226 |
-
value: 90.
|
227 |
- type: dot_f1
|
228 |
-
value: 84.
|
229 |
- type: dot_precision
|
230 |
-
value: 80.
|
231 |
- type: dot_recall
|
232 |
-
value: 88.
|
233 |
- type: euclidean_accuracy
|
234 |
value: 83.43956704750451
|
235 |
- type: euclidean_ap
|
236 |
-
value: 90.
|
237 |
- type: euclidean_f1
|
238 |
-
value: 84.
|
239 |
- type: euclidean_precision
|
240 |
-
value:
|
241 |
- type: euclidean_recall
|
242 |
-
value:
|
243 |
- type: manhattan_accuracy
|
244 |
value: 83.55983162958509
|
245 |
- type: manhattan_ap
|
246 |
-
value: 90.
|
247 |
- type: manhattan_f1
|
248 |
-
value: 84.
|
249 |
- type: manhattan_precision
|
250 |
-
value: 82.
|
251 |
- type: manhattan_recall
|
252 |
-
value: 86.
|
253 |
- type: max_accuracy
|
254 |
value: 83.55983162958509
|
255 |
- type: max_ap
|
256 |
-
value: 90.
|
257 |
- type: max_f1
|
258 |
-
value: 84.
|
259 |
- task:
|
260 |
type: Retrieval
|
261 |
dataset:
|
@@ -266,65 +266,65 @@ model-index:
|
|
266 |
revision: 1271c7809071a13532e05f25fb53511ffce77117
|
267 |
metrics:
|
268 |
- type: map_at_1
|
269 |
-
value:
|
270 |
- type: map_at_10
|
271 |
-
value:
|
272 |
- type: map_at_100
|
273 |
-
value:
|
274 |
- type: map_at_1000
|
275 |
-
value:
|
276 |
- type: map_at_3
|
277 |
-
value:
|
278 |
- type: map_at_5
|
279 |
-
value:
|
280 |
- type: mrr_at_1
|
281 |
-
value:
|
282 |
- type: mrr_at_10
|
283 |
-
value:
|
284 |
- type: mrr_at_100
|
285 |
-
value:
|
286 |
- type: mrr_at_1000
|
287 |
-
value:
|
288 |
- type: mrr_at_3
|
289 |
-
value:
|
290 |
- type: mrr_at_5
|
291 |
-
value:
|
292 |
- type: ndcg_at_1
|
293 |
-
value:
|
294 |
- type: ndcg_at_10
|
295 |
-
value:
|
296 |
- type: ndcg_at_100
|
297 |
-
value:
|
298 |
- type: ndcg_at_1000
|
299 |
-
value: 82.
|
300 |
- type: ndcg_at_3
|
301 |
-
value:
|
302 |
- type: ndcg_at_5
|
303 |
-
value:
|
304 |
- type: precision_at_1
|
305 |
-
value:
|
306 |
- type: precision_at_10
|
307 |
-
value: 9.
|
308 |
- type: precision_at_100
|
309 |
value: 1.001
|
310 |
- type: precision_at_1000
|
311 |
value: 0.101
|
312 |
- type: precision_at_3
|
313 |
-
value:
|
314 |
- type: precision_at_5
|
315 |
-
value:
|
316 |
- type: recall_at_1
|
317 |
-
value:
|
318 |
- type: recall_at_10
|
319 |
-
value:
|
320 |
- type: recall_at_100
|
321 |
value: 99.05199999999999
|
322 |
- type: recall_at_1000
|
323 |
value: 99.895
|
324 |
- type: recall_at_3
|
325 |
-
value:
|
326 |
- type: recall_at_5
|
327 |
-
value:
|
328 |
- task:
|
329 |
type: Retrieval
|
330 |
dataset:
|
@@ -335,65 +335,65 @@ model-index:
|
|
335 |
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
|
336 |
metrics:
|
337 |
- type: map_at_1
|
338 |
-
value: 25.
|
339 |
- type: map_at_10
|
340 |
-
value:
|
341 |
- type: map_at_100
|
342 |
-
value: 81.
|
343 |
- type: map_at_1000
|
344 |
-
value: 81.
|
345 |
- type: map_at_3
|
346 |
-
value: 54.
|
347 |
- type: map_at_5
|
348 |
-
value:
|
349 |
- type: mrr_at_1
|
350 |
-
value: 89.
|
351 |
- type: mrr_at_10
|
352 |
-
value: 92.
|
353 |
- type: mrr_at_100
|
354 |
-
value: 92.
|
355 |
- type: mrr_at_1000
|
356 |
-
value: 92.
|
357 |
- type: mrr_at_3
|
358 |
-
value: 92.
|
359 |
- type: mrr_at_5
|
360 |
-
value: 92.
|
361 |
- type: ndcg_at_1
|
362 |
-
value: 89.
|
363 |
- type: ndcg_at_10
|
364 |
-
value: 86.
|
365 |
- type: ndcg_at_100
|
366 |
-
value: 89.
|
367 |
- type: ndcg_at_1000
|
368 |
-
value: 89.
|
369 |
- type: ndcg_at_3
|
370 |
-
value:
|
371 |
- type: ndcg_at_5
|
372 |
-
value: 84.
|
373 |
- type: precision_at_1
|
374 |
-
value: 89.
|
375 |
- type: precision_at_10
|
376 |
-
value: 41.
|
377 |
- type: precision_at_100
|
378 |
-
value: 4.
|
379 |
- type: precision_at_1000
|
380 |
value: 0.488
|
381 |
- type: precision_at_3
|
382 |
-
value: 76.
|
383 |
- type: precision_at_5
|
384 |
-
value:
|
385 |
- type: recall_at_1
|
386 |
-
value: 25.
|
387 |
- type: recall_at_10
|
388 |
-
value: 87.
|
389 |
- type: recall_at_100
|
390 |
-
value: 96.
|
391 |
- type: recall_at_1000
|
392 |
-
value: 99.
|
393 |
- type: recall_at_3
|
394 |
-
value: 56.
|
395 |
- type: recall_at_5
|
396 |
-
value:
|
397 |
- task:
|
398 |
type: Retrieval
|
399 |
dataset:
|
@@ -404,63 +404,63 @@ model-index:
|
|
404 |
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
|
405 |
metrics:
|
406 |
- type: map_at_1
|
407 |
-
value: 52.
|
408 |
- type: map_at_10
|
409 |
-
value: 62.
|
410 |
- type: map_at_100
|
411 |
-
value: 63.
|
412 |
- type: map_at_1000
|
413 |
-
value: 63.
|
414 |
- type: map_at_3
|
415 |
-
value: 60.
|
416 |
- type: map_at_5
|
417 |
-
value: 61.
|
418 |
- type: mrr_at_1
|
419 |
-
value: 52.
|
420 |
- type: mrr_at_10
|
421 |
-
value: 62.
|
422 |
- type: mrr_at_100
|
423 |
-
value: 63.
|
424 |
- type: mrr_at_1000
|
425 |
-
value: 63.
|
426 |
- type: mrr_at_3
|
427 |
-
value: 60.
|
428 |
- type: mrr_at_5
|
429 |
-
value: 61.
|
430 |
- type: ndcg_at_1
|
431 |
-
value: 52.
|
432 |
- type: ndcg_at_10
|
433 |
-
value: 67.
|
434 |
- type: ndcg_at_100
|
435 |
-
value: 69.
|
436 |
- type: ndcg_at_1000
|
437 |
-
value: 70.
|
438 |
- type: ndcg_at_3
|
439 |
value: 62.82600000000001
|
440 |
- type: ndcg_at_5
|
441 |
-
value: 65.
|
442 |
- type: precision_at_1
|
443 |
-
value: 52.
|
444 |
- type: precision_at_10
|
445 |
-
value: 8.
|
446 |
- type: precision_at_100
|
447 |
value: 0.941
|
448 |
- type: precision_at_1000
|
449 |
value: 0.097
|
450 |
- type: precision_at_3
|
451 |
-
value: 23.
|
452 |
- type: precision_at_5
|
453 |
value: 15.36
|
454 |
- type: recall_at_1
|
455 |
-
value: 52.
|
456 |
- type: recall_at_10
|
457 |
-
value: 83.
|
458 |
- type: recall_at_100
|
459 |
value: 94.1
|
460 |
- type: recall_at_1000
|
461 |
value: 97.0
|
462 |
- type: recall_at_3
|
463 |
-
value: 70.
|
464 |
- type: recall_at_5
|
465 |
value: 76.8
|
466 |
- task:
|
@@ -473,9 +473,9 @@ model-index:
|
|
473 |
revision: 421605374b29664c5fc098418fe20ada9bd55f8a
|
474 |
metrics:
|
475 |
- type: accuracy
|
476 |
-
value: 51.
|
477 |
- type: f1
|
478 |
-
value: 40.
|
479 |
- task:
|
480 |
type: Classification
|
481 |
dataset:
|
@@ -501,17 +501,17 @@ model-index:
|
|
501 |
revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
|
502 |
metrics:
|
503 |
- type: cos_sim_pearson
|
504 |
-
value: 71.
|
505 |
- type: cos_sim_spearman
|
506 |
-
value: 78.
|
507 |
- type: euclidean_pearson
|
508 |
-
value: 77.
|
509 |
- type: euclidean_spearman
|
510 |
-
value: 78.
|
511 |
- type: manhattan_pearson
|
512 |
-
value: 77.
|
513 |
- type: manhattan_spearman
|
514 |
-
value: 78.
|
515 |
- task:
|
516 |
type: Reranking
|
517 |
dataset:
|
@@ -522,9 +522,9 @@ model-index:
|
|
522 |
revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6
|
523 |
metrics:
|
524 |
- type: map
|
525 |
-
value: 27.
|
526 |
- type: mrr
|
527 |
-
value:
|
528 |
- task:
|
529 |
type: Retrieval
|
530 |
dataset:
|
@@ -535,65 +535,65 @@ model-index:
|
|
535 |
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
|
536 |
metrics:
|
537 |
- type: map_at_1
|
538 |
-
value: 65.
|
539 |
- type: map_at_10
|
540 |
-
value: 74.
|
541 |
- type: map_at_100
|
542 |
value: 75.091
|
543 |
- type: map_at_1000
|
544 |
-
value: 75.
|
545 |
- type: map_at_3
|
546 |
-
value:
|
547 |
- type: map_at_5
|
548 |
-
value: 74.
|
549 |
- type: mrr_at_1
|
550 |
-
value: 67.
|
551 |
- type: mrr_at_10
|
552 |
-
value: 75.
|
553 |
- type: mrr_at_100
|
554 |
-
value: 75.
|
555 |
- type: mrr_at_1000
|
556 |
value: 75.685
|
557 |
- type: mrr_at_3
|
558 |
-
value: 73.
|
559 |
- type: mrr_at_5
|
560 |
-
value: 74.
|
561 |
- type: ndcg_at_1
|
562 |
-
value: 67.
|
563 |
- type: ndcg_at_10
|
564 |
-
value: 78.
|
565 |
- type: ndcg_at_100
|
566 |
-
value: 79.
|
567 |
- type: ndcg_at_1000
|
568 |
value: 80.265
|
569 |
- type: ndcg_at_3
|
570 |
-
value: 75.
|
571 |
- type: ndcg_at_5
|
572 |
-
value: 76.
|
573 |
- type: precision_at_1
|
574 |
-
value: 67.
|
575 |
- type: precision_at_10
|
576 |
-
value: 9.
|
577 |
- type: precision_at_100
|
578 |
value: 1.023
|
579 |
- type: precision_at_1000
|
580 |
value: 0.105
|
581 |
- type: precision_at_3
|
582 |
-
value: 28.
|
583 |
- type: precision_at_5
|
584 |
-
value: 17.
|
585 |
- type: recall_at_1
|
586 |
-
value: 65.
|
587 |
- type: recall_at_10
|
588 |
-
value: 89.
|
589 |
- type: recall_at_100
|
590 |
-
value:
|
591 |
- type: recall_at_1000
|
592 |
value: 98.455
|
593 |
- type: recall_at_3
|
594 |
-
value: 80.
|
595 |
- type: recall_at_5
|
596 |
-
value: 84.
|
597 |
- task:
|
598 |
type: Classification
|
599 |
dataset:
|
@@ -604,9 +604,9 @@ model-index:
|
|
604 |
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
605 |
metrics:
|
606 |
- type: accuracy
|
607 |
-
value: 75.
|
608 |
- type: f1
|
609 |
-
value: 73.
|
610 |
- task:
|
611 |
type: Classification
|
612 |
dataset:
|
@@ -617,9 +617,9 @@ model-index:
|
|
617 |
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
618 |
metrics:
|
619 |
- type: accuracy
|
620 |
-
value: 78.
|
621 |
- type: f1
|
622 |
-
value: 78.
|
623 |
- task:
|
624 |
type: Retrieval
|
625 |
dataset:
|
@@ -630,65 +630,65 @@ model-index:
|
|
630 |
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
|
631 |
metrics:
|
632 |
- type: map_at_1
|
633 |
-
value:
|
634 |
- type: map_at_10
|
635 |
-
value: 61.
|
636 |
- type: map_at_100
|
637 |
-
value: 61.
|
638 |
- type: map_at_1000
|
639 |
-
value: 61.
|
640 |
- type: map_at_3
|
641 |
-
value: 59.
|
642 |
- type: map_at_5
|
643 |
-
value: 60.
|
644 |
- type: mrr_at_1
|
645 |
-
value: 55.
|
646 |
- type: mrr_at_10
|
647 |
-
value: 61.
|
648 |
- type: mrr_at_100
|
649 |
-
value: 61.
|
650 |
- type: mrr_at_1000
|
651 |
-
value: 61.
|
652 |
- type: mrr_at_3
|
653 |
-
value: 59.
|
654 |
- type: mrr_at_5
|
655 |
-
value: 60.
|
656 |
- type: ndcg_at_1
|
657 |
-
value:
|
658 |
- type: ndcg_at_10
|
659 |
-
value: 64.
|
660 |
- type: ndcg_at_100
|
661 |
-
value:
|
662 |
- type: ndcg_at_1000
|
663 |
-
value: 68.
|
664 |
- type: ndcg_at_3
|
665 |
-
value:
|
666 |
- type: ndcg_at_5
|
667 |
-
value: 62.
|
668 |
- type: precision_at_1
|
669 |
-
value:
|
670 |
- type: precision_at_10
|
671 |
-
value: 7.
|
672 |
- type: precision_at_100
|
673 |
-
value: 0.
|
674 |
- type: precision_at_1000
|
675 |
value: 0.098
|
676 |
- type: precision_at_3
|
677 |
value: 21.7
|
678 |
- type: precision_at_5
|
679 |
-
value: 13.
|
680 |
- type: recall_at_1
|
681 |
-
value:
|
682 |
- type: recall_at_10
|
683 |
-
value: 73.
|
684 |
- type: recall_at_100
|
685 |
-
value: 88.
|
686 |
- type: recall_at_1000
|
687 |
value: 97.8
|
688 |
- type: recall_at_3
|
689 |
value: 65.10000000000001
|
690 |
- type: recall_at_5
|
691 |
-
value: 68.
|
692 |
- task:
|
693 |
type: Classification
|
694 |
dataset:
|
@@ -699,9 +699,9 @@ model-index:
|
|
699 |
revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
|
700 |
metrics:
|
701 |
- type: accuracy
|
702 |
-
value: 77.
|
703 |
- type: f1
|
704 |
-
value: 77.
|
705 |
- task:
|
706 |
type: PairClassification
|
707 |
dataset:
|
@@ -714,49 +714,49 @@ model-index:
|
|
714 |
- type: cos_sim_accuracy
|
715 |
value: 81.10449377368705
|
716 |
- type: cos_sim_ap
|
717 |
-
value: 85.
|
718 |
- type: cos_sim_f1
|
719 |
-
value:
|
720 |
- type: cos_sim_precision
|
721 |
-
value: 75.
|
722 |
- type: cos_sim_recall
|
723 |
-
value: 92.
|
724 |
- type: dot_accuracy
|
725 |
-
value: 81.
|
726 |
- type: dot_ap
|
727 |
-
value: 85.
|
728 |
- type: dot_f1
|
729 |
-
value: 83.
|
730 |
- type: dot_precision
|
731 |
-
value: 75.
|
732 |
- type: dot_recall
|
733 |
-
value: 92.
|
734 |
- type: euclidean_accuracy
|
735 |
value: 81.10449377368705
|
736 |
- type: euclidean_ap
|
737 |
-
value: 85.
|
738 |
- type: euclidean_f1
|
739 |
-
value:
|
740 |
- type: euclidean_precision
|
741 |
-
value: 75.
|
742 |
- type: euclidean_recall
|
743 |
-
value: 92.
|
744 |
- type: manhattan_accuracy
|
745 |
-
value: 81.
|
746 |
- type: manhattan_ap
|
747 |
-
value: 85.
|
748 |
- type: manhattan_f1
|
749 |
-
value: 82.
|
750 |
- type: manhattan_precision
|
751 |
-
value: 75.
|
752 |
- type: manhattan_recall
|
753 |
-
value:
|
754 |
- type: max_accuracy
|
755 |
-
value: 81.
|
756 |
- type: max_ap
|
757 |
-
value: 85.
|
758 |
- type: max_f1
|
759 |
-
value: 83.
|
760 |
- task:
|
761 |
type: Classification
|
762 |
dataset:
|
@@ -767,11 +767,11 @@ model-index:
|
|
767 |
revision: e610f2ebd179a8fda30ae534c3878750a96db120
|
768 |
metrics:
|
769 |
- type: accuracy
|
770 |
-
value: 93.
|
771 |
- type: ap
|
772 |
-
value: 91.
|
773 |
- type: f1
|
774 |
-
value: 93.
|
775 |
- task:
|
776 |
type: STS
|
777 |
dataset:
|
@@ -782,17 +782,17 @@ model-index:
|
|
782 |
revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
|
783 |
metrics:
|
784 |
- type: cos_sim_pearson
|
785 |
-
value: 39.
|
786 |
- type: cos_sim_spearman
|
787 |
-
value: 45.
|
788 |
- type: euclidean_pearson
|
789 |
-
value: 44.
|
790 |
- type: euclidean_spearman
|
791 |
-
value: 45.
|
792 |
- type: manhattan_pearson
|
793 |
-
value: 44.
|
794 |
- type: manhattan_spearman
|
795 |
-
value: 45.
|
796 |
- task:
|
797 |
type: STS
|
798 |
dataset:
|
@@ -803,17 +803,17 @@ model-index:
|
|
803 |
revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
|
804 |
metrics:
|
805 |
- type: cos_sim_pearson
|
806 |
-
value: 34.
|
807 |
- type: cos_sim_spearman
|
808 |
-
value: 37.
|
809 |
- type: euclidean_pearson
|
810 |
-
value: 35.
|
811 |
- type: euclidean_spearman
|
812 |
-
value: 37.
|
813 |
- type: manhattan_pearson
|
814 |
-
value: 35.
|
815 |
- type: manhattan_spearman
|
816 |
-
value: 37.
|
817 |
- task:
|
818 |
type: STS
|
819 |
dataset:
|
@@ -824,17 +824,17 @@ model-index:
|
|
824 |
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
|
825 |
metrics:
|
826 |
- type: cos_sim_pearson
|
827 |
-
value: 61.
|
828 |
- type: cos_sim_spearman
|
829 |
-
value:
|
830 |
- type: euclidean_pearson
|
831 |
-
value:
|
832 |
- type: euclidean_spearman
|
833 |
-
value:
|
834 |
- type: manhattan_pearson
|
835 |
-
value:
|
836 |
- type: manhattan_spearman
|
837 |
-
value:
|
838 |
- task:
|
839 |
type: STS
|
840 |
dataset:
|
@@ -845,17 +845,17 @@ model-index:
|
|
845 |
revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
|
846 |
metrics:
|
847 |
- type: cos_sim_pearson
|
848 |
-
value: 81.
|
849 |
- type: cos_sim_spearman
|
850 |
-
value: 82.
|
851 |
- type: euclidean_pearson
|
852 |
-
value: 82.
|
853 |
- type: euclidean_spearman
|
854 |
-
value: 82.
|
855 |
- type: manhattan_pearson
|
856 |
-
value: 82.
|
857 |
- type: manhattan_spearman
|
858 |
-
value: 82.
|
859 |
- task:
|
860 |
type: Reranking
|
861 |
dataset:
|
@@ -866,9 +866,9 @@ model-index:
|
|
866 |
revision: 76631901a18387f85eaa53e5450019b87ad58ef9
|
867 |
metrics:
|
868 |
- type: map
|
869 |
-
value:
|
870 |
- type: mrr
|
871 |
-
value:
|
872 |
- task:
|
873 |
type: Retrieval
|
874 |
dataset:
|
@@ -879,65 +879,65 @@ model-index:
|
|
879 |
revision: 8731a845f1bf500a4f111cf1070785c793d10e64
|
880 |
metrics:
|
881 |
- type: map_at_1
|
882 |
-
value: 27.
|
883 |
- type: map_at_10
|
884 |
-
value:
|
885 |
- type: map_at_100
|
886 |
-
value:
|
887 |
- type: map_at_1000
|
888 |
-
value:
|
889 |
- type: map_at_3
|
890 |
-
value:
|
891 |
- type: map_at_5
|
892 |
-
value:
|
893 |
- type: mrr_at_1
|
894 |
-
value:
|
895 |
- type: mrr_at_10
|
896 |
-
value:
|
897 |
- type: mrr_at_100
|
898 |
-
value:
|
899 |
- type: mrr_at_1000
|
900 |
-
value:
|
901 |
- type: mrr_at_3
|
902 |
-
value:
|
903 |
- type: mrr_at_5
|
904 |
-
value:
|
905 |
- type: ndcg_at_1
|
906 |
-
value:
|
907 |
- type: ndcg_at_10
|
908 |
-
value:
|
909 |
- type: ndcg_at_100
|
910 |
-
value:
|
911 |
- type: ndcg_at_1000
|
912 |
-
value:
|
913 |
- type: ndcg_at_3
|
914 |
-
value:
|
915 |
- type: ndcg_at_5
|
916 |
-
value:
|
917 |
- type: precision_at_1
|
918 |
-
value:
|
919 |
- type: precision_at_10
|
920 |
-
value:
|
921 |
- type: precision_at_100
|
922 |
-
value:
|
923 |
- type: precision_at_1000
|
924 |
-
value: 0.
|
925 |
- type: precision_at_3
|
926 |
-
value:
|
927 |
- type: precision_at_5
|
928 |
-
value:
|
929 |
- type: recall_at_1
|
930 |
-
value: 27.
|
931 |
- type: recall_at_10
|
932 |
-
value:
|
933 |
- type: recall_at_100
|
934 |
-
value: 95.
|
935 |
- type: recall_at_1000
|
936 |
-
value: 98.
|
937 |
- type: recall_at_3
|
938 |
-
value:
|
939 |
- type: recall_at_5
|
940 |
-
value:
|
941 |
- task:
|
942 |
type: Classification
|
943 |
dataset:
|
@@ -948,9 +948,9 @@ model-index:
|
|
948 |
revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
|
949 |
metrics:
|
950 |
- type: accuracy
|
951 |
-
value: 53.
|
952 |
- type: f1
|
953 |
-
value: 51.
|
954 |
- task:
|
955 |
type: Clustering
|
956 |
dataset:
|
@@ -961,7 +961,7 @@ model-index:
|
|
961 |
revision: 5798586b105c0434e4f0fe5e767abe619442cf93
|
962 |
metrics:
|
963 |
- type: v_measure
|
964 |
-
value:
|
965 |
- task:
|
966 |
type: Clustering
|
967 |
dataset:
|
@@ -972,7 +972,7 @@ model-index:
|
|
972 |
revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
|
973 |
metrics:
|
974 |
- type: v_measure
|
975 |
-
value:
|
976 |
- task:
|
977 |
type: Retrieval
|
978 |
dataset:
|
@@ -985,43 +985,43 @@ model-index:
|
|
985 |
- type: map_at_1
|
986 |
value: 59.4
|
987 |
- type: map_at_10
|
988 |
-
value: 69.
|
989 |
- type: map_at_100
|
990 |
-
value: 69.711
|
991 |
-
- type: map_at_1000
|
992 |
value: 69.72699999999999
|
|
|
|
|
993 |
- type: map_at_3
|
994 |
value: 67.717
|
995 |
- type: map_at_5
|
996 |
-
value: 68.
|
997 |
- type: mrr_at_1
|
998 |
value: 59.4
|
999 |
- type: mrr_at_10
|
1000 |
-
value: 69.
|
1001 |
- type: mrr_at_100
|
1002 |
-
value: 69.711
|
1003 |
-
- type: mrr_at_1000
|
1004 |
value: 69.72699999999999
|
|
|
|
|
1005 |
- type: mrr_at_3
|
1006 |
value: 67.717
|
1007 |
- type: mrr_at_5
|
1008 |
-
value: 68.
|
1009 |
- type: ndcg_at_1
|
1010 |
value: 59.4
|
1011 |
- type: ndcg_at_10
|
1012 |
-
value: 73.
|
1013 |
- type: ndcg_at_100
|
1014 |
-
value: 75.
|
1015 |
- type: ndcg_at_1000
|
1016 |
-
value: 75.
|
1017 |
- type: ndcg_at_3
|
1018 |
value: 70.339
|
1019 |
- type: ndcg_at_5
|
1020 |
-
value: 72.
|
1021 |
- type: precision_at_1
|
1022 |
value: 59.4
|
1023 |
- type: precision_at_10
|
1024 |
-
value: 8.
|
1025 |
- type: precision_at_100
|
1026 |
value: 0.96
|
1027 |
- type: precision_at_1000
|
@@ -1029,11 +1029,11 @@ model-index:
|
|
1029 |
- type: precision_at_3
|
1030 |
value: 25.967000000000002
|
1031 |
- type: precision_at_5
|
1032 |
-
value: 16.
|
1033 |
- type: recall_at_1
|
1034 |
value: 59.4
|
1035 |
- type: recall_at_10
|
1036 |
-
value: 85.
|
1037 |
- type: recall_at_100
|
1038 |
value: 96.0
|
1039 |
- type: recall_at_1000
|
@@ -1041,7 +1041,7 @@ model-index:
|
|
1041 |
- type: recall_at_3
|
1042 |
value: 77.9
|
1043 |
- type: recall_at_5
|
1044 |
-
value: 82.
|
1045 |
- task:
|
1046 |
type: Classification
|
1047 |
dataset:
|
@@ -1052,12 +1052,14 @@ model-index:
|
|
1052 |
revision: 339287def212450dcaa9df8c22bf93e9980c7023
|
1053 |
metrics:
|
1054 |
- type: accuracy
|
1055 |
-
value: 88.
|
1056 |
- type: ap
|
1057 |
-
value: 73.
|
1058 |
- type: f1
|
1059 |
-
value: 87.
|
1060 |
---
|
|
|
|
|
1061 |
## acge model
|
1062 |
|
1063 |
acge是一个通用的文本编码模型,是一个可变长度的向量化模型,使用了[Matryoshka Representation Learning](https://arxiv.org/abs/2205.13147),如图所示:
|
@@ -1077,13 +1079,16 @@ acge是一个通用的文本编码模型,是一个可变长度的向量化模
|
|
1077 |
#### C-MTEB leaderboard (Chinese)
|
1078 |
|
1079 |
测试的时候因为数据的随机性、显卡、推理的数据类型导致每次推理的结果不一致,我总共测试了4次,不同的显卡(A10 A100),不同的数据类型,测试结果放在了result文件夹中,选取了一个精度最低的测试作为最终的精度测试。
|
|
|
1080 |
|
1081 |
| Model Name | GPU | tensor-type | Model Size (GB) | Dimension | Sequence Length | Average (35) | Classification (9) | Clustering (4) | Pair Classification (2) | Reranking (4) | Retrieval (8) | STS (8) |
|
1082 |
|:------------------:|:---------------:|:---------:|:---------------:|:------------:|:------------------:|:--------------:|:-----------------------:|:-------------:|:-------------:|:-------:|:-------:|:-------:|
|
1083 |
-
| acge_text_embedding
|
1084 |
-
| acge_text_embedding
|
1085 |
| acge_text_embedding | NVIDIA TESLA A100 | float16 | 0.65 | 1792 | 1024 | 68.99 | 72.76 | 58.68 | 87.84 | 67.89 | 72.49 | 62.24 |
|
1086 |
| acge_text_embedding | NVIDIA TESLA A100 | float32 | 0.65 | 1792 | 1024 | 68.98 | 72.76 | 58.58 | 87.83 | 67.91 | 72.49 | 62.24 |
|
|
|
|
|
1087 |
|
1088 |
#### Reproduce our results
|
1089 |
|
|
|
18 |
revision: b44c3b011063adb25877c13823db83bb193913c4
|
19 |
metrics:
|
20 |
- type: cos_sim_pearson
|
21 |
+
value: 54.03434872650919
|
22 |
- type: cos_sim_spearman
|
23 |
+
value: 58.80730796688325
|
24 |
- type: euclidean_pearson
|
25 |
+
value: 57.47231387497989
|
26 |
- type: euclidean_spearman
|
27 |
+
value: 58.80775026351807
|
28 |
- type: manhattan_pearson
|
29 |
+
value: 57.46332720141574
|
30 |
- type: manhattan_spearman
|
31 |
+
value: 58.80196022940078
|
32 |
- task:
|
33 |
type: STS
|
34 |
dataset:
|
|
|
39 |
revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
|
40 |
metrics:
|
41 |
- type: cos_sim_pearson
|
42 |
+
value: 53.52621290548175
|
43 |
- type: cos_sim_spearman
|
44 |
+
value: 57.945227768312144
|
45 |
- type: euclidean_pearson
|
46 |
+
value: 61.17041394151802
|
47 |
- type: euclidean_spearman
|
48 |
+
value: 57.94553287835657
|
49 |
- type: manhattan_pearson
|
50 |
+
value: 61.168327500057885
|
51 |
- type: manhattan_spearman
|
52 |
+
value: 57.94477516925043
|
53 |
- task:
|
54 |
type: Classification
|
55 |
dataset:
|
|
|
60 |
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
61 |
metrics:
|
62 |
- type: accuracy
|
63 |
+
value: 48.538000000000004
|
64 |
- type: f1
|
65 |
+
value: 46.59920995594044
|
66 |
- task:
|
67 |
type: STS
|
68 |
dataset:
|
|
|
73 |
revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
|
74 |
metrics:
|
75 |
- type: cos_sim_pearson
|
76 |
+
value: 68.27529991817154
|
77 |
- type: cos_sim_spearman
|
78 |
+
value: 70.37095914176643
|
79 |
- type: euclidean_pearson
|
80 |
+
value: 69.42690712802727
|
81 |
- type: euclidean_spearman
|
82 |
+
value: 70.37017971889912
|
83 |
- type: manhattan_pearson
|
84 |
+
value: 69.40264877917839
|
85 |
- type: manhattan_spearman
|
86 |
+
value: 70.34786744049524
|
87 |
- task:
|
88 |
type: Clustering
|
89 |
dataset:
|
|
|
94 |
revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
|
95 |
metrics:
|
96 |
- type: v_measure
|
97 |
+
value: 47.08027536192709
|
98 |
- task:
|
99 |
type: Clustering
|
100 |
dataset:
|
|
|
105 |
revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
|
106 |
metrics:
|
107 |
- type: v_measure
|
108 |
+
value: 44.0526024940363
|
109 |
- task:
|
110 |
type: Reranking
|
111 |
dataset:
|
|
|
116 |
revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
|
117 |
metrics:
|
118 |
- type: map
|
119 |
+
value: 88.65974993133156
|
120 |
- type: mrr
|
121 |
+
value: 90.64761904761905
|
122 |
- task:
|
123 |
type: Reranking
|
124 |
dataset:
|
|
|
129 |
revision: 23d186750531a14a0357ca22cd92d712fd512ea0
|
130 |
metrics:
|
131 |
- type: map
|
132 |
+
value: 88.90396838907245
|
133 |
- type: mrr
|
134 |
+
value: 90.90932539682541
|
135 |
- task:
|
136 |
type: Retrieval
|
137 |
dataset:
|
|
|
142 |
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
|
143 |
metrics:
|
144 |
- type: map_at_1
|
145 |
+
value: 26.875
|
146 |
- type: map_at_10
|
147 |
+
value: 39.995999999999995
|
148 |
- type: map_at_100
|
149 |
+
value: 41.899
|
150 |
- type: map_at_1000
|
151 |
+
value: 42.0
|
152 |
- type: map_at_3
|
153 |
+
value: 35.414
|
154 |
- type: map_at_5
|
155 |
+
value: 38.019
|
156 |
- type: mrr_at_1
|
157 |
+
value: 40.635
|
158 |
- type: mrr_at_10
|
159 |
+
value: 48.827
|
160 |
- type: mrr_at_100
|
161 |
+
value: 49.805
|
162 |
- type: mrr_at_1000
|
163 |
+
value: 49.845
|
164 |
- type: mrr_at_3
|
165 |
+
value: 46.145
|
166 |
- type: mrr_at_5
|
167 |
+
value: 47.693999999999996
|
168 |
- type: ndcg_at_1
|
169 |
+
value: 40.635
|
170 |
- type: ndcg_at_10
|
171 |
+
value: 46.78
|
172 |
- type: ndcg_at_100
|
173 |
+
value: 53.986999999999995
|
174 |
- type: ndcg_at_1000
|
175 |
+
value: 55.684
|
176 |
- type: ndcg_at_3
|
177 |
+
value: 41.018
|
178 |
- type: ndcg_at_5
|
179 |
+
value: 43.559
|
180 |
- type: precision_at_1
|
181 |
+
value: 40.635
|
182 |
- type: precision_at_10
|
183 |
+
value: 10.427999999999999
|
184 |
- type: precision_at_100
|
185 |
value: 1.625
|
186 |
- type: precision_at_1000
|
187 |
value: 0.184
|
188 |
- type: precision_at_3
|
189 |
+
value: 23.139000000000003
|
190 |
- type: precision_at_5
|
191 |
+
value: 17.004
|
192 |
- type: recall_at_1
|
193 |
+
value: 26.875
|
194 |
- type: recall_at_10
|
195 |
+
value: 57.887
|
196 |
- type: recall_at_100
|
197 |
+
value: 87.408
|
198 |
- type: recall_at_1000
|
199 |
+
value: 98.721
|
200 |
- type: recall_at_3
|
201 |
+
value: 40.812
|
202 |
- type: recall_at_5
|
203 |
+
value: 48.397
|
204 |
- task:
|
205 |
type: PairClassification
|
206 |
dataset:
|
|
|
211 |
revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
|
212 |
metrics:
|
213 |
- type: cos_sim_accuracy
|
214 |
+
value: 83.43956704750451
|
215 |
- type: cos_sim_ap
|
216 |
+
value: 90.49172854352659
|
217 |
- type: cos_sim_f1
|
218 |
+
value: 84.28475486903963
|
219 |
- type: cos_sim_precision
|
220 |
+
value: 80.84603822203135
|
221 |
- type: cos_sim_recall
|
222 |
+
value: 88.02899228431144
|
223 |
- type: dot_accuracy
|
224 |
+
value: 83.43956704750451
|
225 |
- type: dot_ap
|
226 |
+
value: 90.46317132695233
|
227 |
- type: dot_f1
|
228 |
+
value: 84.28794294628929
|
229 |
- type: dot_precision
|
230 |
+
value: 80.51948051948052
|
231 |
- type: dot_recall
|
232 |
+
value: 88.4264671498714
|
233 |
- type: euclidean_accuracy
|
234 |
value: 83.43956704750451
|
235 |
- type: euclidean_ap
|
236 |
+
value: 90.49171785256486
|
237 |
- type: euclidean_f1
|
238 |
+
value: 84.28235820561584
|
239 |
- type: euclidean_precision
|
240 |
+
value: 80.8022308022308
|
241 |
- type: euclidean_recall
|
242 |
+
value: 88.07575403320084
|
243 |
- type: manhattan_accuracy
|
244 |
value: 83.55983162958509
|
245 |
- type: manhattan_ap
|
246 |
+
value: 90.48046779812815
|
247 |
- type: manhattan_f1
|
248 |
+
value: 84.45354259069714
|
249 |
- type: manhattan_precision
|
250 |
+
value: 82.21877767936226
|
251 |
- type: manhattan_recall
|
252 |
+
value: 86.81318681318682
|
253 |
- type: max_accuracy
|
254 |
value: 83.55983162958509
|
255 |
- type: max_ap
|
256 |
+
value: 90.49172854352659
|
257 |
- type: max_f1
|
258 |
+
value: 84.45354259069714
|
259 |
- task:
|
260 |
type: Retrieval
|
261 |
dataset:
|
|
|
266 |
revision: 1271c7809071a13532e05f25fb53511ffce77117
|
267 |
metrics:
|
268 |
- type: map_at_1
|
269 |
+
value: 68.54599999999999
|
270 |
- type: map_at_10
|
271 |
+
value: 77.62400000000001
|
272 |
- type: map_at_100
|
273 |
+
value: 77.886
|
274 |
- type: map_at_1000
|
275 |
+
value: 77.89
|
276 |
- type: map_at_3
|
277 |
+
value: 75.966
|
278 |
- type: map_at_5
|
279 |
+
value: 76.995
|
280 |
- type: mrr_at_1
|
281 |
+
value: 68.915
|
282 |
- type: mrr_at_10
|
283 |
+
value: 77.703
|
284 |
- type: mrr_at_100
|
285 |
+
value: 77.958
|
286 |
- type: mrr_at_1000
|
287 |
+
value: 77.962
|
288 |
- type: mrr_at_3
|
289 |
+
value: 76.08
|
290 |
- type: mrr_at_5
|
291 |
+
value: 77.118
|
292 |
- type: ndcg_at_1
|
293 |
+
value: 68.809
|
294 |
- type: ndcg_at_10
|
295 |
+
value: 81.563
|
296 |
- type: ndcg_at_100
|
297 |
+
value: 82.758
|
298 |
- type: ndcg_at_1000
|
299 |
+
value: 82.864
|
300 |
- type: ndcg_at_3
|
301 |
+
value: 78.29
|
302 |
- type: ndcg_at_5
|
303 |
+
value: 80.113
|
304 |
- type: precision_at_1
|
305 |
+
value: 68.809
|
306 |
- type: precision_at_10
|
307 |
+
value: 9.463000000000001
|
308 |
- type: precision_at_100
|
309 |
value: 1.001
|
310 |
- type: precision_at_1000
|
311 |
value: 0.101
|
312 |
- type: precision_at_3
|
313 |
+
value: 28.486
|
314 |
- type: precision_at_5
|
315 |
+
value: 18.019
|
316 |
- type: recall_at_1
|
317 |
+
value: 68.54599999999999
|
318 |
- type: recall_at_10
|
319 |
+
value: 93.625
|
320 |
- type: recall_at_100
|
321 |
value: 99.05199999999999
|
322 |
- type: recall_at_1000
|
323 |
value: 99.895
|
324 |
- type: recall_at_3
|
325 |
+
value: 84.879
|
326 |
- type: recall_at_5
|
327 |
+
value: 89.252
|
328 |
- task:
|
329 |
type: Retrieval
|
330 |
dataset:
|
|
|
335 |
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
|
336 |
metrics:
|
337 |
- type: map_at_1
|
338 |
+
value: 25.653
|
339 |
- type: map_at_10
|
340 |
+
value: 79.105
|
341 |
- type: map_at_100
|
342 |
+
value: 81.902
|
343 |
- type: map_at_1000
|
344 |
+
value: 81.947
|
345 |
- type: map_at_3
|
346 |
+
value: 54.54599999999999
|
347 |
- type: map_at_5
|
348 |
+
value: 69.226
|
349 |
- type: mrr_at_1
|
350 |
+
value: 89.35
|
351 |
- type: mrr_at_10
|
352 |
+
value: 92.69
|
353 |
- type: mrr_at_100
|
354 |
+
value: 92.77
|
355 |
- type: mrr_at_1000
|
356 |
+
value: 92.774
|
357 |
- type: mrr_at_3
|
358 |
+
value: 92.425
|
359 |
- type: mrr_at_5
|
360 |
+
value: 92.575
|
361 |
- type: ndcg_at_1
|
362 |
+
value: 89.35
|
363 |
- type: ndcg_at_10
|
364 |
+
value: 86.55199999999999
|
365 |
- type: ndcg_at_100
|
366 |
+
value: 89.35300000000001
|
367 |
- type: ndcg_at_1000
|
368 |
+
value: 89.782
|
369 |
- type: ndcg_at_3
|
370 |
+
value: 85.392
|
371 |
- type: ndcg_at_5
|
372 |
+
value: 84.5
|
373 |
- type: precision_at_1
|
374 |
+
value: 89.35
|
375 |
- type: precision_at_10
|
376 |
+
value: 41.589999999999996
|
377 |
- type: precision_at_100
|
378 |
+
value: 4.781
|
379 |
- type: precision_at_1000
|
380 |
value: 0.488
|
381 |
- type: precision_at_3
|
382 |
+
value: 76.683
|
383 |
- type: precision_at_5
|
384 |
+
value: 65.06
|
385 |
- type: recall_at_1
|
386 |
+
value: 25.653
|
387 |
- type: recall_at_10
|
388 |
+
value: 87.64999999999999
|
389 |
- type: recall_at_100
|
390 |
+
value: 96.858
|
391 |
- type: recall_at_1000
|
392 |
+
value: 99.13300000000001
|
393 |
- type: recall_at_3
|
394 |
+
value: 56.869
|
395 |
- type: recall_at_5
|
396 |
+
value: 74.024
|
397 |
- task:
|
398 |
type: Retrieval
|
399 |
dataset:
|
|
|
404 |
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
|
405 |
metrics:
|
406 |
- type: map_at_1
|
407 |
+
value: 52.1
|
408 |
- type: map_at_10
|
409 |
+
value: 62.629999999999995
|
410 |
- type: map_at_100
|
411 |
+
value: 63.117000000000004
|
412 |
- type: map_at_1000
|
413 |
+
value: 63.134
|
414 |
- type: map_at_3
|
415 |
+
value: 60.267
|
416 |
- type: map_at_5
|
417 |
+
value: 61.777
|
418 |
- type: mrr_at_1
|
419 |
+
value: 52.1
|
420 |
- type: mrr_at_10
|
421 |
+
value: 62.629999999999995
|
422 |
- type: mrr_at_100
|
423 |
+
value: 63.117000000000004
|
424 |
- type: mrr_at_1000
|
425 |
+
value: 63.134
|
426 |
- type: mrr_at_3
|
427 |
+
value: 60.267
|
428 |
- type: mrr_at_5
|
429 |
+
value: 61.777
|
430 |
- type: ndcg_at_1
|
431 |
+
value: 52.1
|
432 |
- type: ndcg_at_10
|
433 |
+
value: 67.596
|
434 |
- type: ndcg_at_100
|
435 |
+
value: 69.95
|
436 |
- type: ndcg_at_1000
|
437 |
+
value: 70.33500000000001
|
438 |
- type: ndcg_at_3
|
439 |
value: 62.82600000000001
|
440 |
- type: ndcg_at_5
|
441 |
+
value: 65.546
|
442 |
- type: precision_at_1
|
443 |
+
value: 52.1
|
444 |
- type: precision_at_10
|
445 |
+
value: 8.309999999999999
|
446 |
- type: precision_at_100
|
447 |
value: 0.941
|
448 |
- type: precision_at_1000
|
449 |
value: 0.097
|
450 |
- type: precision_at_3
|
451 |
+
value: 23.400000000000002
|
452 |
- type: precision_at_5
|
453 |
value: 15.36
|
454 |
- type: recall_at_1
|
455 |
+
value: 52.1
|
456 |
- type: recall_at_10
|
457 |
+
value: 83.1
|
458 |
- type: recall_at_100
|
459 |
value: 94.1
|
460 |
- type: recall_at_1000
|
461 |
value: 97.0
|
462 |
- type: recall_at_3
|
463 |
+
value: 70.19999999999999
|
464 |
- type: recall_at_5
|
465 |
value: 76.8
|
466 |
- task:
|
|
|
473 |
revision: 421605374b29664c5fc098418fe20ada9bd55f8a
|
474 |
metrics:
|
475 |
- type: accuracy
|
476 |
+
value: 51.773759138130046
|
477 |
- type: f1
|
478 |
+
value: 40.341407912920054
|
479 |
- task:
|
480 |
type: Classification
|
481 |
dataset:
|
|
|
501 |
revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
|
502 |
metrics:
|
503 |
- type: cos_sim_pearson
|
504 |
+
value: 71.1397780205448
|
505 |
- type: cos_sim_spearman
|
506 |
+
value: 78.17368193033309
|
507 |
- type: euclidean_pearson
|
508 |
+
value: 77.4849177602368
|
509 |
- type: euclidean_spearman
|
510 |
+
value: 78.17369079663212
|
511 |
- type: manhattan_pearson
|
512 |
+
value: 77.47344305182406
|
513 |
- type: manhattan_spearman
|
514 |
+
value: 78.16454335155387
|
515 |
- task:
|
516 |
type: Reranking
|
517 |
dataset:
|
|
|
522 |
revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6
|
523 |
metrics:
|
524 |
- type: map
|
525 |
+
value: 27.76160559006673
|
526 |
- type: mrr
|
527 |
+
value: 28.02420634920635
|
528 |
- task:
|
529 |
type: Retrieval
|
530 |
dataset:
|
|
|
535 |
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
|
536 |
metrics:
|
537 |
- type: map_at_1
|
538 |
+
value: 65.661
|
539 |
- type: map_at_10
|
540 |
+
value: 74.752
|
541 |
- type: map_at_100
|
542 |
value: 75.091
|
543 |
- type: map_at_1000
|
544 |
+
value: 75.104
|
545 |
- type: map_at_3
|
546 |
+
value: 72.997
|
547 |
- type: map_at_5
|
548 |
+
value: 74.119
|
549 |
- type: mrr_at_1
|
550 |
+
value: 67.923
|
551 |
- type: mrr_at_10
|
552 |
+
value: 75.376
|
553 |
- type: mrr_at_100
|
554 |
+
value: 75.673
|
555 |
- type: mrr_at_1000
|
556 |
value: 75.685
|
557 |
- type: mrr_at_3
|
558 |
+
value: 73.856
|
559 |
- type: mrr_at_5
|
560 |
+
value: 74.82799999999999
|
561 |
- type: ndcg_at_1
|
562 |
+
value: 67.923
|
563 |
- type: ndcg_at_10
|
564 |
+
value: 78.424
|
565 |
- type: ndcg_at_100
|
566 |
+
value: 79.95100000000001
|
567 |
- type: ndcg_at_1000
|
568 |
value: 80.265
|
569 |
- type: ndcg_at_3
|
570 |
+
value: 75.101
|
571 |
- type: ndcg_at_5
|
572 |
+
value: 76.992
|
573 |
- type: precision_at_1
|
574 |
+
value: 67.923
|
575 |
- type: precision_at_10
|
576 |
+
value: 9.474
|
577 |
- type: precision_at_100
|
578 |
value: 1.023
|
579 |
- type: precision_at_1000
|
580 |
value: 0.105
|
581 |
- type: precision_at_3
|
582 |
+
value: 28.319
|
583 |
- type: precision_at_5
|
584 |
+
value: 17.986
|
585 |
- type: recall_at_1
|
586 |
+
value: 65.661
|
587 |
- type: recall_at_10
|
588 |
+
value: 89.09899999999999
|
589 |
- type: recall_at_100
|
590 |
+
value: 96.023
|
591 |
- type: recall_at_1000
|
592 |
value: 98.455
|
593 |
- type: recall_at_3
|
594 |
+
value: 80.314
|
595 |
- type: recall_at_5
|
596 |
+
value: 84.81
|
597 |
- task:
|
598 |
type: Classification
|
599 |
dataset:
|
|
|
604 |
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
605 |
metrics:
|
606 |
- type: accuracy
|
607 |
+
value: 75.86751849361131
|
608 |
- type: f1
|
609 |
+
value: 73.04918450508
|
610 |
- task:
|
611 |
type: Classification
|
612 |
dataset:
|
|
|
617 |
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
618 |
metrics:
|
619 |
- type: accuracy
|
620 |
+
value: 78.4364492266308
|
621 |
- type: f1
|
622 |
+
value: 78.120686034844
|
623 |
- task:
|
624 |
type: Retrieval
|
625 |
dataset:
|
|
|
630 |
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
|
631 |
metrics:
|
632 |
- type: map_at_1
|
633 |
+
value: 55.00000000000001
|
634 |
- type: map_at_10
|
635 |
+
value: 61.06399999999999
|
636 |
- type: map_at_100
|
637 |
+
value: 61.622
|
638 |
- type: map_at_1000
|
639 |
+
value: 61.663000000000004
|
640 |
- type: map_at_3
|
641 |
+
value: 59.583
|
642 |
- type: map_at_5
|
643 |
+
value: 60.373
|
644 |
- type: mrr_at_1
|
645 |
+
value: 55.2
|
646 |
- type: mrr_at_10
|
647 |
+
value: 61.168
|
648 |
- type: mrr_at_100
|
649 |
+
value: 61.726000000000006
|
650 |
- type: mrr_at_1000
|
651 |
+
value: 61.767
|
652 |
- type: mrr_at_3
|
653 |
+
value: 59.683
|
654 |
- type: mrr_at_5
|
655 |
+
value: 60.492999999999995
|
656 |
- type: ndcg_at_1
|
657 |
+
value: 55.00000000000001
|
658 |
- type: ndcg_at_10
|
659 |
+
value: 64.098
|
660 |
- type: ndcg_at_100
|
661 |
+
value: 67.05
|
662 |
- type: ndcg_at_1000
|
663 |
+
value: 68.262
|
664 |
- type: ndcg_at_3
|
665 |
+
value: 61.00600000000001
|
666 |
- type: ndcg_at_5
|
667 |
+
value: 62.439
|
668 |
- type: precision_at_1
|
669 |
+
value: 55.00000000000001
|
670 |
- type: precision_at_10
|
671 |
+
value: 7.37
|
672 |
- type: precision_at_100
|
673 |
+
value: 0.881
|
674 |
- type: precision_at_1000
|
675 |
value: 0.098
|
676 |
- type: precision_at_3
|
677 |
value: 21.7
|
678 |
- type: precision_at_5
|
679 |
+
value: 13.719999999999999
|
680 |
- type: recall_at_1
|
681 |
+
value: 55.00000000000001
|
682 |
- type: recall_at_10
|
683 |
+
value: 73.7
|
684 |
- type: recall_at_100
|
685 |
+
value: 88.1
|
686 |
- type: recall_at_1000
|
687 |
value: 97.8
|
688 |
- type: recall_at_3
|
689 |
value: 65.10000000000001
|
690 |
- type: recall_at_5
|
691 |
+
value: 68.60000000000001
|
692 |
- task:
|
693 |
type: Classification
|
694 |
dataset:
|
|
|
699 |
revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
|
700 |
metrics:
|
701 |
- type: accuracy
|
702 |
+
value: 77.52666666666667
|
703 |
- type: f1
|
704 |
+
value: 77.49784731367215
|
705 |
- task:
|
706 |
type: PairClassification
|
707 |
dataset:
|
|
|
714 |
- type: cos_sim_accuracy
|
715 |
value: 81.10449377368705
|
716 |
- type: cos_sim_ap
|
717 |
+
value: 85.17742765935606
|
718 |
- type: cos_sim_f1
|
719 |
+
value: 83.00094966761633
|
720 |
- type: cos_sim_precision
|
721 |
+
value: 75.40983606557377
|
722 |
- type: cos_sim_recall
|
723 |
+
value: 92.29144667370645
|
724 |
- type: dot_accuracy
|
725 |
+
value: 81.10449377368705
|
726 |
- type: dot_ap
|
727 |
+
value: 85.17143850809614
|
728 |
- type: dot_f1
|
729 |
+
value: 83.01707779886148
|
730 |
- type: dot_precision
|
731 |
+
value: 75.36606373815677
|
732 |
- type: dot_recall
|
733 |
+
value: 92.39704329461456
|
734 |
- type: euclidean_accuracy
|
735 |
value: 81.10449377368705
|
736 |
- type: euclidean_ap
|
737 |
+
value: 85.17856775343333
|
738 |
- type: euclidean_f1
|
739 |
+
value: 83.00094966761633
|
740 |
- type: euclidean_precision
|
741 |
+
value: 75.40983606557377
|
742 |
- type: euclidean_recall
|
743 |
+
value: 92.29144667370645
|
744 |
- type: manhattan_accuracy
|
745 |
+
value: 81.05035192203573
|
746 |
- type: manhattan_ap
|
747 |
+
value: 85.14464459395809
|
748 |
- type: manhattan_f1
|
749 |
+
value: 82.96155671570953
|
750 |
- type: manhattan_precision
|
751 |
+
value: 75.3448275862069
|
752 |
- type: manhattan_recall
|
753 |
+
value: 92.29144667370645
|
754 |
- type: max_accuracy
|
755 |
+
value: 81.10449377368705
|
756 |
- type: max_ap
|
757 |
+
value: 85.17856775343333
|
758 |
- type: max_f1
|
759 |
+
value: 83.01707779886148
|
760 |
- task:
|
761 |
type: Classification
|
762 |
dataset:
|
|
|
767 |
revision: e610f2ebd179a8fda30ae534c3878750a96db120
|
768 |
metrics:
|
769 |
- type: accuracy
|
770 |
+
value: 93.71000000000001
|
771 |
- type: ap
|
772 |
+
value: 91.83202232349356
|
773 |
- type: f1
|
774 |
+
value: 93.69900560334331
|
775 |
- task:
|
776 |
type: STS
|
777 |
dataset:
|
|
|
782 |
revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
|
783 |
metrics:
|
784 |
- type: cos_sim_pearson
|
785 |
+
value: 39.175047651512415
|
786 |
- type: cos_sim_spearman
|
787 |
+
value: 45.51434675777896
|
788 |
- type: euclidean_pearson
|
789 |
+
value: 44.864110004132286
|
790 |
- type: euclidean_spearman
|
791 |
+
value: 45.516433048896076
|
792 |
- type: manhattan_pearson
|
793 |
+
value: 44.87153627706517
|
794 |
- type: manhattan_spearman
|
795 |
+
value: 45.52862617925012
|
796 |
- task:
|
797 |
type: STS
|
798 |
dataset:
|
|
|
803 |
revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
|
804 |
metrics:
|
805 |
- type: cos_sim_pearson
|
806 |
+
value: 34.249579701429084
|
807 |
- type: cos_sim_spearman
|
808 |
+
value: 37.30903127368978
|
809 |
- type: euclidean_pearson
|
810 |
+
value: 35.129438425253355
|
811 |
- type: euclidean_spearman
|
812 |
+
value: 37.308544018709085
|
813 |
- type: manhattan_pearson
|
814 |
+
value: 35.08936153503652
|
815 |
- type: manhattan_spearman
|
816 |
+
value: 37.25582901077839
|
817 |
- task:
|
818 |
type: STS
|
819 |
dataset:
|
|
|
824 |
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
|
825 |
metrics:
|
826 |
- type: cos_sim_pearson
|
827 |
+
value: 61.29309637460004
|
828 |
- type: cos_sim_spearman
|
829 |
+
value: 65.85136090376717
|
830 |
- type: euclidean_pearson
|
831 |
+
value: 64.04783990953557
|
832 |
- type: euclidean_spearman
|
833 |
+
value: 65.85036859610366
|
834 |
- type: manhattan_pearson
|
835 |
+
value: 63.995852552712186
|
836 |
- type: manhattan_spearman
|
837 |
+
value: 65.86508416749417
|
838 |
- task:
|
839 |
type: STS
|
840 |
dataset:
|
|
|
845 |
revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
|
846 |
metrics:
|
847 |
- type: cos_sim_pearson
|
848 |
+
value: 81.5595940455587
|
849 |
- type: cos_sim_spearman
|
850 |
+
value: 82.72654634579749
|
851 |
- type: euclidean_pearson
|
852 |
+
value: 82.4892721061365
|
853 |
- type: euclidean_spearman
|
854 |
+
value: 82.72678504228253
|
855 |
- type: manhattan_pearson
|
856 |
+
value: 82.4770861422454
|
857 |
- type: manhattan_spearman
|
858 |
+
value: 82.71137469783162
|
859 |
- task:
|
860 |
type: Reranking
|
861 |
dataset:
|
|
|
866 |
revision: 76631901a18387f85eaa53e5450019b87ad58ef9
|
867 |
metrics:
|
868 |
- type: map
|
869 |
+
value: 66.6159547610527
|
870 |
- type: mrr
|
871 |
+
value: 76.35739406347057
|
872 |
- task:
|
873 |
type: Retrieval
|
874 |
dataset:
|
|
|
879 |
revision: 8731a845f1bf500a4f111cf1070785c793d10e64
|
880 |
metrics:
|
881 |
- type: map_at_1
|
882 |
+
value: 27.878999999999998
|
883 |
- type: map_at_10
|
884 |
+
value: 77.517
|
885 |
- type: map_at_100
|
886 |
+
value: 81.139
|
887 |
- type: map_at_1000
|
888 |
+
value: 81.204
|
889 |
- type: map_at_3
|
890 |
+
value: 54.728
|
891 |
- type: map_at_5
|
892 |
+
value: 67.128
|
893 |
- type: mrr_at_1
|
894 |
+
value: 90.509
|
895 |
- type: mrr_at_10
|
896 |
+
value: 92.964
|
897 |
- type: mrr_at_100
|
898 |
+
value: 93.045
|
899 |
- type: mrr_at_1000
|
900 |
+
value: 93.048
|
901 |
- type: mrr_at_3
|
902 |
+
value: 92.551
|
903 |
- type: mrr_at_5
|
904 |
+
value: 92.81099999999999
|
905 |
- type: ndcg_at_1
|
906 |
+
value: 90.509
|
907 |
- type: ndcg_at_10
|
908 |
+
value: 85.075
|
909 |
- type: ndcg_at_100
|
910 |
+
value: 88.656
|
911 |
- type: ndcg_at_1000
|
912 |
+
value: 89.25699999999999
|
913 |
- type: ndcg_at_3
|
914 |
+
value: 86.58200000000001
|
915 |
- type: ndcg_at_5
|
916 |
+
value: 85.138
|
917 |
- type: precision_at_1
|
918 |
+
value: 90.509
|
919 |
- type: precision_at_10
|
920 |
+
value: 42.05
|
921 |
- type: precision_at_100
|
922 |
+
value: 5.013999999999999
|
923 |
- type: precision_at_1000
|
924 |
+
value: 0.516
|
925 |
- type: precision_at_3
|
926 |
+
value: 75.551
|
927 |
- type: precision_at_5
|
928 |
+
value: 63.239999999999995
|
929 |
- type: recall_at_1
|
930 |
+
value: 27.878999999999998
|
931 |
- type: recall_at_10
|
932 |
+
value: 83.941
|
933 |
- type: recall_at_100
|
934 |
+
value: 95.568
|
935 |
- type: recall_at_1000
|
936 |
+
value: 98.55000000000001
|
937 |
- type: recall_at_3
|
938 |
+
value: 56.374
|
939 |
- type: recall_at_5
|
940 |
+
value: 70.435
|
941 |
- task:
|
942 |
type: Classification
|
943 |
dataset:
|
|
|
948 |
revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
|
949 |
metrics:
|
950 |
- type: accuracy
|
951 |
+
value: 53.687
|
952 |
- type: f1
|
953 |
+
value: 51.86911933364655
|
954 |
- task:
|
955 |
type: Clustering
|
956 |
dataset:
|
|
|
961 |
revision: 5798586b105c0434e4f0fe5e767abe619442cf93
|
962 |
metrics:
|
963 |
- type: v_measure
|
964 |
+
value: 74.65887489872564
|
965 |
- task:
|
966 |
type: Clustering
|
967 |
dataset:
|
|
|
972 |
revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
|
973 |
metrics:
|
974 |
- type: v_measure
|
975 |
+
value: 69.00410995984436
|
976 |
- task:
|
977 |
type: Retrieval
|
978 |
dataset:
|
|
|
985 |
- type: map_at_1
|
986 |
value: 59.4
|
987 |
- type: map_at_10
|
988 |
+
value: 69.214
|
989 |
- type: map_at_100
|
|
|
|
|
990 |
value: 69.72699999999999
|
991 |
+
- type: map_at_1000
|
992 |
+
value: 69.743
|
993 |
- type: map_at_3
|
994 |
value: 67.717
|
995 |
- type: map_at_5
|
996 |
+
value: 68.782
|
997 |
- type: mrr_at_1
|
998 |
value: 59.4
|
999 |
- type: mrr_at_10
|
1000 |
+
value: 69.214
|
1001 |
- type: mrr_at_100
|
|
|
|
|
1002 |
value: 69.72699999999999
|
1003 |
+
- type: mrr_at_1000
|
1004 |
+
value: 69.743
|
1005 |
- type: mrr_at_3
|
1006 |
value: 67.717
|
1007 |
- type: mrr_at_5
|
1008 |
+
value: 68.782
|
1009 |
- type: ndcg_at_1
|
1010 |
value: 59.4
|
1011 |
- type: ndcg_at_10
|
1012 |
+
value: 73.32300000000001
|
1013 |
- type: ndcg_at_100
|
1014 |
+
value: 75.591
|
1015 |
- type: ndcg_at_1000
|
1016 |
+
value: 75.98700000000001
|
1017 |
- type: ndcg_at_3
|
1018 |
value: 70.339
|
1019 |
- type: ndcg_at_5
|
1020 |
+
value: 72.246
|
1021 |
- type: precision_at_1
|
1022 |
value: 59.4
|
1023 |
- type: precision_at_10
|
1024 |
+
value: 8.59
|
1025 |
- type: precision_at_100
|
1026 |
value: 0.96
|
1027 |
- type: precision_at_1000
|
|
|
1029 |
- type: precision_at_3
|
1030 |
value: 25.967000000000002
|
1031 |
- type: precision_at_5
|
1032 |
+
value: 16.5
|
1033 |
- type: recall_at_1
|
1034 |
value: 59.4
|
1035 |
- type: recall_at_10
|
1036 |
+
value: 85.9
|
1037 |
- type: recall_at_100
|
1038 |
value: 96.0
|
1039 |
- type: recall_at_1000
|
|
|
1041 |
- type: recall_at_3
|
1042 |
value: 77.9
|
1043 |
- type: recall_at_5
|
1044 |
+
value: 82.5
|
1045 |
- task:
|
1046 |
type: Classification
|
1047 |
dataset:
|
|
|
1052 |
revision: 339287def212450dcaa9df8c22bf93e9980c7023
|
1053 |
metrics:
|
1054 |
- type: accuracy
|
1055 |
+
value: 88.53
|
1056 |
- type: ap
|
1057 |
+
value: 73.56216166534062
|
1058 |
- type: f1
|
1059 |
+
value: 87.06093694294485
|
1060 |
---
|
1061 |
+
|
1062 |
+
|
1063 |
## acge model
|
1064 |
|
1065 |
acge是一个通用的文本编码模型,是一个可变长度的向量化模型,使用了[Matryoshka Representation Learning](https://arxiv.org/abs/2205.13147),如图所示:
|
|
|
1079 |
#### C-MTEB leaderboard (Chinese)
|
1080 |
|
1081 |
测试的时候因为数据的随机性、显卡、推理的数据类型导致每次推理的结果不一致,我总共测试了4次,不同的显卡(A10 A100),不同的数据类型,测试结果放在了result文件夹中,选取了一个精度最低的测试作为最终的精度测试。
|
1082 |
+
根据[infgrad](https://huggingface.co/infgrad)的建议,选取不用的输入的长度作为测试,Sequence Length为512时测试最佳。
|
1083 |
|
1084 |
| Model Name | GPU | tensor-type | Model Size (GB) | Dimension | Sequence Length | Average (35) | Classification (9) | Clustering (4) | Pair Classification (2) | Reranking (4) | Retrieval (8) | STS (8) |
|
1085 |
|:------------------:|:---------------:|:---------:|:---------------:|:------------:|:------------------:|:--------------:|:-----------------------:|:-------------:|:-------------:|:-------:|:-------:|:-------:|
|
1086 |
+
| acge_text_embedding | NVIDIA TESLA A10 | bfloat16 | 0.65 | 1792 | 1024 | 68.91 | 72.76 | 58.22 | 87.82 | 67.67 | 72.48 | 62.24 |
|
1087 |
+
| acge_text_embedding | NVIDIA TESLA A100 | bfloat16 | 0.65 | 1792 | 1024 | 68.91 | 72.77 | 58.35 | 87.82 | 67.53 | 72.48 | 62.24 |
|
1088 |
| acge_text_embedding | NVIDIA TESLA A100 | float16 | 0.65 | 1792 | 1024 | 68.99 | 72.76 | 58.68 | 87.84 | 67.89 | 72.49 | 62.24 |
|
1089 |
| acge_text_embedding | NVIDIA TESLA A100 | float32 | 0.65 | 1792 | 1024 | 68.98 | 72.76 | 58.58 | 87.83 | 67.91 | 72.49 | 62.24 |
|
1090 |
+
| acge_text_embedding | NVIDIA TESLA A100 | float16 | 0.65 | 1792 | 768 | 68.95 | 72.76 | 58.68 | 87.84 | 67.86 | 72.48 | 62.07 |
|
1091 |
+
| acge_text_embedding | NVIDIA TESLA A100 | float16 | 0.65 | 1792 | 512 | 69.07 | 72.75 | 58.7 | 87.84 | 67.99 | 72.93 | 62.09 |
|
1092 |
|
1093 |
#### Reproduce our results
|
1094 |
|