Meta-Llama-3-8B-VIGGO-qlora
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 0.6168
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.5174 | 0.99 | 25 | 0.5002 |
0.4168 | 1.98 | 50 | 0.4846 |
0.3898 | 2.97 | 75 | 0.4930 |
0.3179 | 4.0 | 101 | 0.5523 |
0.2378 | 4.95 | 125 | 0.6168 |
Framework versions
- PEFT 0.10.0
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2
- Downloads last month
- 0
Model tree for asprenger/Meta-Llama-3-8B-VIGGO-qlora
Base model
meta-llama/Meta-Llama-3-8B