t5_small_samsum / README.md
athuldinesh's picture
Model save
def2a74 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google-t5/t5-small
tags:
  - generated_from_trainer
datasets:
  - samsum
metrics:
  - rouge
model-index:
  - name: t5_small_samsum
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: samsum
          type: samsum
          config: samsum
          split: validation
          args: samsum
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.4282

t5_small_samsum

This model is a fine-tuned version of google-t5/t5-small on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7255
  • Rouge1: 0.4282
  • Rouge2: 0.2003
  • Rougel: 0.36
  • Rougelsum: 0.3596
  • Gen Len: 16.7372

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.9452 1.0 921 1.7726 0.4147 0.1901 0.3492 0.3493 16.4719
1.8952 2.0 1842 1.7498 0.4237 0.1971 0.3577 0.3577 16.4548
1.8703 3.0 2763 1.7323 0.4243 0.1968 0.3571 0.3566 16.7689
1.8579 4.0 3684 1.7310 0.4262 0.2012 0.3606 0.3604 16.7641
1.8525 5.0 4605 1.7255 0.4282 0.2003 0.36 0.3596 16.7372

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1