adr-ner
This model is a fine-tuned version of austin/Austin-MeDeBERTa on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0434
- Precision: 0.7305
- Recall: 0.6934
- F1: 0.7115
- Accuracy: 0.9941
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 107 | 0.0630 | 0.0 | 0.0 | 0.0 | 0.9876 |
No log | 2.0 | 214 | 0.0308 | 0.4282 | 0.3467 | 0.3832 | 0.9900 |
No log | 3.0 | 321 | 0.0254 | 0.5544 | 0.5603 | 0.5573 | 0.9920 |
No log | 4.0 | 428 | 0.0280 | 0.6430 | 0.5751 | 0.6071 | 0.9929 |
0.0465 | 5.0 | 535 | 0.0266 | 0.5348 | 0.7146 | 0.6118 | 0.9915 |
0.0465 | 6.0 | 642 | 0.0423 | 0.7632 | 0.5793 | 0.6587 | 0.9939 |
0.0465 | 7.0 | 749 | 0.0336 | 0.6957 | 0.6765 | 0.6860 | 0.9939 |
0.0465 | 8.0 | 856 | 0.0370 | 0.6876 | 0.6702 | 0.6788 | 0.9936 |
0.0465 | 9.0 | 963 | 0.0349 | 0.6555 | 0.7040 | 0.6789 | 0.9932 |
0.0044 | 10.0 | 1070 | 0.0403 | 0.6910 | 0.6808 | 0.6858 | 0.9938 |
0.0044 | 11.0 | 1177 | 0.0415 | 0.7140 | 0.6808 | 0.6970 | 0.9939 |
0.0044 | 12.0 | 1284 | 0.0440 | 0.7349 | 0.6681 | 0.6999 | 0.9941 |
0.0044 | 13.0 | 1391 | 0.0423 | 0.7097 | 0.6977 | 0.7036 | 0.9941 |
0.0044 | 14.0 | 1498 | 0.0435 | 0.7174 | 0.6977 | 0.7074 | 0.9941 |
0.0006 | 15.0 | 1605 | 0.0434 | 0.7305 | 0.6934 | 0.7115 | 0.9941 |
Framework versions
- Transformers 4.14.1
- Pytorch 1.10.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.