avans06's picture
Update README.md
9f74291
|
raw
history blame
2.75 kB
---
license: mit
tags:
- ctranslate2
- quantization
- int8
- float16
- text-generation
- ALMA
- llama
---
# ALMA-7B model for CTranslate2
The model is quantized version of the [haoranxu/ALMA-7B](https://huggingface.co/haoranxu/ALMA-7B) with int8_float16 quantization and can be used in [CTranslate2](https://github.com/OpenNMT/CTranslate2).
**ALMA** (**A**dvanced **L**anguage **M**odel-based tr**A**nslator) is an LLM-based translation model, which adopts a new translation model paradigm: it begins with fine-tuning on monolingual data and is further optimized using high-quality parallel data. This two-step fine-tuning process ensures strong translation performance.
- Model creator: [Haoran Xu](https://huggingface.co/haoranxu)
- Original model: [ALMA 7B](https://huggingface.co/haoranxu/ALMA-7B)
## Conversion details
The original model was converted on 2023-12 with the following command:
```
ct2-transformers-converter --model haoranxu/ALMA-7B --quantization int8_float16 --output_dir ALMA-7B-ct2_int8_float16 \
--copy_files generation_config.json special_tokens_map.json tokenizer.model tokenizer_config.json
```
## Prompt template: ALMA
```
Translate this from English to Chinese:
English: {prompt}
Chinese:
```
## Example
This example code is obtained from [CTranslate2_transformers](https://opennmt.net/CTranslate2/guides/transformers.html#mpt).
More detailed information about the `generate_batch` methon can be found at [CTranslate2_Generator.generate_batch](https://opennmt.net/CTranslate2/python/ctranslate2.Generator.html#ctranslate2.Generator.generate_batch).
```python
import ctranslate2
import transformers
generator = ctranslate2.Generator("avans06/ALMA-7B-ct2_int8_float16")
tokenizer = transformers.AutoTokenizer.from_pretrained("haoranxu/ALMA-7B")
text = "Who is Alan Turing?"
prompt = f"Translate this from English to Chinese:\nEnglish: {text}\nChinese:"
tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt))
results = generator.generate_batch([tokens], max_length=256, sampling_temperature=0.7, sampling_topp=0.9, repetition_penalty=1.1, include_prompt_in_result=False)
output = tokenizer.decode(results[0].sequences_ids[0])
```
## The following explanations are excerpted from the [FAQ section of the author's GitHub README](https://github.com/fe1ixxu/ALMA#what-language-directions-do-alma-support).
- **What language directions do ALMA support?**
Currently, ALMA supports 10 directions: English↔German, Englishs↔Czech, Englishs↔Icelandic, Englishs↔Chinese, Englishs↔Russian. However, it may surprise us in other directions :)
## More information
For more information about the original model, see its [GitHub repository](https://github.com/fe1ixxu/ALMA)