avurity's picture
update model card README.md
1c4ba04
|
raw
history blame
5.71 kB
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
datasets:
  - wildreceipt
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-wildreceipt
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: wildreceipt
          type: wildreceipt
          config: WildReceipt
          split: test
          args: WildReceipt
        metrics:
          - name: Precision
            type: precision
            value: 0.8791872597473915
          - name: Recall
            type: recall
            value: 0.8814865794907089
          - name: F1
            type: f1
            value: 0.8803354182418035
          - name: Accuracy
            type: accuracy
            value: 0.9270261366132221

layoutlmv3-finetuned-wildreceipt

This model is a fine-tuned version of microsoft/layoutlmv3-base on the wildreceipt dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3081
  • Precision: 0.8792
  • Recall: 0.8815
  • F1: 0.8803
  • Accuracy: 0.9270

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.32 100 1.3430 0.5041 0.1959 0.2821 0.6414
No log 0.63 200 0.8931 0.6739 0.5367 0.5975 0.7786
No log 0.95 300 0.6793 0.7332 0.6410 0.6840 0.8273
No log 1.26 400 0.5804 0.7659 0.7090 0.7364 0.8507
1.0357 1.58 500 0.4876 0.7919 0.7551 0.7731 0.8723
1.0357 1.89 600 0.4417 0.8009 0.7997 0.8003 0.8857
1.0357 2.21 700 0.3937 0.8256 0.8200 0.8228 0.8973
1.0357 2.52 800 0.3904 0.8143 0.8321 0.8231 0.8958
1.0357 2.84 900 0.3638 0.8462 0.8211 0.8334 0.9010
0.3989 3.15 1000 0.3586 0.8386 0.8447 0.8417 0.9055
0.3989 3.47 1100 0.3227 0.8382 0.8564 0.8472 0.9104
0.3989 3.79 1200 0.3120 0.8538 0.8522 0.8530 0.9119
0.3989 4.1 1300 0.3283 0.8498 0.8559 0.8528 0.9117
0.3989 4.42 1400 0.3084 0.8595 0.8606 0.8600 0.9165
0.2727 4.73 1500 0.3026 0.8552 0.8666 0.8609 0.9159
0.2727 5.05 1600 0.3052 0.8633 0.8537 0.8585 0.9165
0.2727 5.36 1700 0.3052 0.8505 0.8747 0.8625 0.9165
0.2727 5.68 1800 0.3040 0.8579 0.8690 0.8634 0.9164
0.2727 5.99 1900 0.2926 0.8717 0.8696 0.8707 0.9205
0.2059 6.31 2000 0.3004 0.8646 0.8753 0.8699 0.9207
0.2059 6.62 2100 0.2973 0.8711 0.8742 0.8726 0.9215
0.2059 6.94 2200 0.3010 0.8650 0.8761 0.8705 0.9214
0.2059 7.26 2300 0.3028 0.8654 0.8760 0.8706 0.9214
0.2059 7.57 2400 0.2956 0.8769 0.8769 0.8769 0.9260
0.1617 7.89 2500 0.2871 0.8746 0.8778 0.8762 0.9266
0.1617 8.2 2600 0.3092 0.8632 0.8797 0.8714 0.9226
0.1617 8.52 2700 0.3042 0.8834 0.8738 0.8786 0.9265
0.1617 8.83 2800 0.3092 0.8672 0.8793 0.8732 0.9224
0.1617 9.15 2900 0.3014 0.8738 0.8841 0.8789 0.9256
0.1359 9.46 3000 0.3038 0.8763 0.8760 0.8762 0.9249
0.1359 9.78 3100 0.3087 0.8730 0.8797 0.8763 0.9241
0.1359 10.09 3200 0.3021 0.8740 0.8812 0.8776 0.9251
0.1359 10.41 3300 0.2975 0.8790 0.8836 0.8812 0.9268
0.1359 10.73 3400 0.3121 0.8734 0.8809 0.8771 0.9254
0.1192 11.04 3500 0.3111 0.8812 0.8794 0.8803 0.9260
0.1192 11.36 3600 0.3101 0.8785 0.8790 0.8788 0.9261
0.1192 11.67 3700 0.3082 0.8790 0.8829 0.8809 0.9275
0.1192 11.99 3800 0.3081 0.8822 0.8830 0.8826 0.9276
0.1192 12.3 3900 0.3100 0.8800 0.8809 0.8805 0.9269
0.1065 12.62 4000 0.3081 0.8792 0.8815 0.8803 0.9270

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.3
  • Tokenizers 0.13.3