See axolotl config
axolotl version: 0.4.1
base_model: meta-llama/Meta-Llama-3-70B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: awilliamson/qbank_conversations
type: chat_template
chat_template: llama3
field_messages: conversations
message_field_role: from
message_field_content: value
roles:
system:
- system
user:
- user
assistant:
- assistant
chat_template: llama3
adapter: qlora
lora_r: 128
lora_alpha: 32
lora_modules_to_save: [embed_tokens, lm_head]
lora_dropout: 0.05
lora_target_linear: true
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./output/llama3-70b
sequence_len: 2048
sample_packing: false
pad_to_sequence_len: true
wandb_project: llama-70b
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 2e-4
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 0
evals_per_epoch: 5
eval_table_size:
saves_per_epoch: 1
save_total_limit: 10
save_steps:
debug:
weight_decay: 0.00
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
special_tokens:
pad_token: "<|end_of_text|>"
output/llama3-70b
This model is a fine-tuned version of meta-llama/Meta-Llama-3-70B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5806
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.6238 | 0.0769 | 1 | 1.6328 |
1.2354 | 0.2308 | 3 | 1.6006 |
1.1512 | 0.4615 | 6 | 1.6043 |
1.1183 | 0.6923 | 9 | 1.5402 |
1.0818 | 0.9231 | 12 | 1.4909 |
0.7404 | 1.1538 | 15 | 1.4745 |
0.6681 | 1.3846 | 18 | 1.5023 |
0.6163 | 1.6154 | 21 | 1.5385 |
0.6596 | 1.8462 | 24 | 1.5612 |
0.5081 | 2.0769 | 27 | 1.5699 |
0.5118 | 2.3077 | 30 | 1.5786 |
0.4827 | 2.5385 | 33 | 1.5808 |
0.4768 | 2.7692 | 36 | 1.5800 |
0.484 | 3.0 | 39 | 1.5806 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.1.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for awilliamson/qbank-instruct
Base model
meta-llama/Meta-Llama-3-70B
Finetuned
meta-llama/Meta-Llama-3-70B-Instruct