metadata
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: hubert-base-ls960-finetuned-common_voice
results: []
hubert-base-ls960-finetuned-common_voice
This model is a fine-tuned version of facebook/hubert-base-ls960 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1194
- Accuracy: 0.9925
- F1: 0.9925
- Recall: 0.9925
- Precision: 0.9926
- Mcc: 0.9906
- Auc: 0.9994
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | Mcc | Auc |
---|---|---|---|---|---|---|---|---|---|
0.6461 | 0.96 | 12 | 0.4123 | 0.9725 | 0.9725 | 0.9725 | 0.9736 | 0.9659 | 0.9992 |
0.622 | 2.0 | 25 | 0.3858 | 0.9225 | 0.9214 | 0.9225 | 0.9354 | 0.9067 | 0.9943 |
0.4827 | 2.96 | 37 | 0.2750 | 0.97 | 0.9699 | 0.97 | 0.9731 | 0.9633 | 0.9988 |
0.3907 | 4.0 | 50 | 0.2061 | 0.98 | 0.9800 | 0.9800 | 0.9809 | 0.9752 | 0.9998 |
0.3212 | 4.96 | 62 | 0.1654 | 0.99 | 0.9900 | 0.9900 | 0.9902 | 0.9875 | 0.9999 |
0.2865 | 6.0 | 75 | 0.1355 | 0.9925 | 0.9925 | 0.9925 | 0.9926 | 0.9906 | 1.0000 |
0.278 | 6.96 | 87 | 0.1379 | 0.9925 | 0.9925 | 0.9925 | 0.9926 | 0.9906 | 0.9989 |
0.2285 | 8.0 | 100 | 0.1199 | 0.995 | 0.9950 | 0.9950 | 0.9950 | 0.9938 | 0.9993 |
0.1975 | 8.96 | 112 | 0.1239 | 0.99 | 0.9900 | 0.9900 | 0.9902 | 0.9875 | 0.9994 |
0.1949 | 9.6 | 120 | 0.1194 | 0.9925 | 0.9925 | 0.9925 | 0.9926 | 0.9906 | 0.9994 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1