|
--- |
|
license: apache-2.0 |
|
base_model: facebook/hubert-base-ls960 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- recall |
|
- precision |
|
model-index: |
|
- name: hubert-base-ls960-finetuned-common_voice |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# hubert-base-ls960-finetuned-common_voice |
|
|
|
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0353 |
|
- Accuracy: 1.0 |
|
- F1: 1.0 |
|
- Recall: 1.0 |
|
- Precision: 1.0 |
|
- Mcc: 1.0 |
|
- Auc: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | Mcc | Auc | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|:------:|:------:| |
|
| 0.1939 | 0.96 | 12 | 0.0971 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.2049 | 2.0 | 25 | 0.0784 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.1763 | 2.96 | 37 | 0.0645 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.1441 | 4.0 | 50 | 0.0972 | 0.985 | 0.9850 | 0.985 | 0.9860 | 0.9815 | 0.9994 | |
|
| 0.1264 | 4.96 | 62 | 0.0627 | 0.9925 | 0.9925 | 0.9925 | 0.9928 | 0.9907 | 1.0 | |
|
| 0.1148 | 6.0 | 75 | 0.0426 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.1114 | 6.96 | 87 | 0.0394 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0911 | 8.0 | 100 | 0.0365 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.078 | 8.96 | 112 | 0.0358 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
| 0.0797 | 9.6 | 120 | 0.0353 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|