aydink's picture
Model save
5a4e976 verified
|
raw
history blame
2.71 kB
---
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: whisper-base-finetuned-common_voice
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-base-finetuned-common_voice
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0319
- Accuracy: 0.9925
- F1: 0.9925
- Recall: 0.9925
- Precision: 0.9927
- Mcc: 0.9907
- Auc: 0.9999
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | Mcc | Auc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|:------:|:------:|
| 0.1765 | 1.0 | 200 | 0.1455 | 0.9775 | 0.9775 | 0.9775 | 0.9776 | 0.9719 | 0.9996 |
| 0.0067 | 2.0 | 400 | 0.0734 | 0.98 | 0.9800 | 0.9800 | 0.9804 | 0.9751 | 0.9996 |
| 0.0218 | 3.0 | 600 | 0.0719 | 0.9875 | 0.9875 | 0.9875 | 0.9879 | 0.9845 | 0.9999 |
| 0.002 | 4.0 | 800 | 0.1055 | 0.975 | 0.9752 | 0.975 | 0.9762 | 0.9690 | 0.9997 |
| 0.0014 | 5.0 | 1000 | 0.0312 | 0.995 | 0.9950 | 0.9950 | 0.9951 | 0.9938 | 0.9999 |
| 0.0011 | 6.0 | 1200 | 0.0305 | 0.995 | 0.9950 | 0.9950 | 0.9951 | 0.9938 | 0.9999 |
| 0.0009 | 7.0 | 1400 | 0.0310 | 0.995 | 0.9950 | 0.9950 | 0.9951 | 0.9938 | 0.9999 |
| 0.0008 | 8.0 | 1600 | 0.0315 | 0.9925 | 0.9925 | 0.9925 | 0.9927 | 0.9907 | 0.9999 |
| 0.0008 | 9.0 | 1800 | 0.0318 | 0.9925 | 0.9925 | 0.9925 | 0.9927 | 0.9907 | 0.9999 |
| 0.0007 | 10.0 | 2000 | 0.0319 | 0.9925 | 0.9925 | 0.9925 | 0.9927 | 0.9907 | 0.9999 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1