|
--- |
|
language: |
|
- zgh |
|
- ber |
|
tags: |
|
- OCR |
|
pipeline_tag: image-to-text |
|
--- |
|
|
|
<p align="center"> |
|
<img src="https://doctr-static.mindee.com/models?id=v0.3.1/Logo_doctr.gif&src=0" width="60%"> |
|
</p> |
|
|
|
**Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch** |
|
|
|
## Task: recognition |
|
|
|
https://github.com/mindee/doctr |
|
|
|
### Example usage: |
|
|
|
```python |
|
>>> from doctr.io import DocumentFile |
|
>>> from doctr.models import ocr_predictor, from_hub |
|
|
|
>>> img = DocumentFile.from_images(['<image_path>']) |
|
>>> # Load your model from the hub |
|
>>> model = from_hub('mindee/my-model') |
|
|
|
>>> # Pass it to the predictor |
|
>>> # If your model is a recognition model: |
|
>>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large', |
|
>>> reco_arch=model, |
|
>>> pretrained=True) |
|
|
|
>>> # If your model is a detection model: |
|
>>> predictor = ocr_predictor(det_arch=model, |
|
>>> reco_arch='crnn_mobilenet_v3_small', |
|
>>> pretrained=True) |
|
|
|
>>> # Get your predictions |
|
>>> res = predictor(img) |
|
``` |
|
### Run Configuration |
|
|
|
{ |
|
"arch": "crnn_mobilenet_v3_large", |
|
"train_path": "train", |
|
"val_path": "val", |
|
"train_samples": 1000, |
|
"val_samples": 20, |
|
"font": "FreeMono.ttf,FreeSans.ttf,FreeSerif.ttf", |
|
"min_chars": 1, |
|
"max_chars": 12, |
|
"name": "crnn_mobilenet_v3_large_gen_hw", |
|
"epochs": 3, |
|
"batch_size": 64, |
|
"device": null, |
|
"input_size": 32, |
|
"lr": 0.001, |
|
"weight_decay": 0, |
|
"workers": 2, |
|
"resume": "crnn_mobilenet_v3_large_printed.pt", |
|
"vocab": "tamazight", |
|
"test_only": false, |
|
"show_samples": false, |
|
"wb": true, |
|
"push_to_hub": true, |
|
"pretrained": false, |
|
"sched": "cosine", |
|
"amp": false, |
|
"find_lr": false |
|
} |