segformer-webots-grasp
This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 4.4405
- Mean Iou: 0.0802
- Mean Accuracy: 0.8142
- Overall Accuracy: 0.8142
- Per Category Iou: [0.8018109121927621, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0]
- Per Category Accuracy: [0.8141941463133944, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
---|---|---|---|---|---|---|---|---|
5.4277 | 0.03 | 1 | 5.4055 | 0.0001 | 0.0011 | 0.0011 | [0.0010665493208110168, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0] | [0.001069721346006343, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
5.3872 | 0.05 | 2 | 5.3965 | 0.0004 | 0.0053 | 0.0053 | [0.005245532234607124, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0] | [0.005252500148444879, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
5.3659 | 0.07 | 3 | 5.3862 | 0.0013 | 0.0160 | 0.0160 | [0.01595653583377678, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0] | [0.015969302211124733, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
5.2685 | 0.1 | 4 | 5.3741 | 0.0037 | 0.0445 | 0.0445 | [0.04445613702342968, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0] | [0.044479595103583916, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
5.2464 | 0.12 | 5 | 5.3603 | 0.0113 | 0.1359 | 0.1359 | [0.13585817440138379, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0] | [0.1359222528362154, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
5.1881 | 0.15 | 6 | 5.3461 | 0.0240 | 0.2880 | 0.2880 | [0.287886510883373, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0] | [0.2879980631769163, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
5.1556 | 0.17 | 7 | 5.3322 | 0.0329 | 0.3949 | 0.3949 | [0.3948099641784779, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0] | [0.3949236748463366, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
5.0952 | 0.2 | 8 | 5.3175 | 0.0400 | 0.4807 | 0.4807 | [0.4805425893875233, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0] | [0.4807401186212317, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
5.0421 | 0.23 | 9 | 5.3015 | 0.0606 | 0.5455 | 0.5455 | [0.5450016850554845, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.5454547402275828, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
5.0168 | 0.25 | 10 | 5.2843 | 0.0659 | 0.5936 | 0.5936 | [0.5926648159557198, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.5935808761369806, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.9417 | 0.28 | 11 | 5.2641 | 0.0575 | 0.6341 | 0.6341 | [0.6324597013631272, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.6340619477314868, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.8962 | 0.3 | 12 | 5.2394 | 0.0606 | 0.6696 | 0.6696 | [0.6670764824873869, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.6695910817989438, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.9963 | 0.33 | 13 | 5.2132 | 0.0574 | 0.6918 | 0.6918 | [0.6887950316615776, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.6918253700562499, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.9677 | 0.35 | 14 | 5.1887 | 0.0703 | 0.7061 | 0.7061 | [0.7026749604186757, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.7060962792061474, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.921 | 0.38 | 15 | 5.1585 | 0.0799 | 0.7228 | 0.7228 | [0.7188799212945968, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.7228307612069762, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.9849 | 0.4 | 16 | 5.1298 | 0.0808 | 0.7311 | 0.7311 | [0.7268635588232967, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.7311038850932571, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.8045 | 0.42 | 17 | 5.0921 | 0.0823 | 0.7458 | 0.7458 | [0.7409411768283134, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.7458280867505752, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.6795 | 0.45 | 18 | 5.0554 | 0.0835 | 0.7575 | 0.7575 | [0.7518766884727517, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.7574526981157601, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.7354 | 0.47 | 19 | 5.0164 | 0.0848 | 0.7698 | 0.7698 | [0.7632263888994257, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.7697950481236874, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.64 | 0.5 | 20 | 4.9783 | 0.0771 | 0.7779 | 0.7779 | [0.7705429510590344, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.7778955474494109, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.6682 | 0.53 | 21 | 4.9336 | 0.0777 | 0.7858 | 0.7858 | [0.7773627351835143, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.7858173007762596, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.6887 | 0.55 | 22 | 4.8904 | 0.0782 | 0.7914 | 0.7914 | [0.7821032704184515, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.791440760086753, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.5486 | 0.57 | 23 | 4.8541 | 0.0785 | 0.7943 | 0.7943 | [0.7845670293951555, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.7943371186267411, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.6823 | 0.6 | 24 | 4.8202 | 0.0787 | 0.7972 | 0.7972 | [0.786876415221171, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.797181751012945, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.5797 | 0.62 | 25 | 4.7832 | 0.0789 | 0.8001 | 0.8001 | [0.7893493389876929, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.8000900463576524, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.5976 | 0.65 | 26 | 4.7564 | 0.0789 | 0.7999 | 0.7999 | [0.7892736529850544, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.7998681442186382, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.5417 | 0.68 | 27 | 4.7152 | 0.0793 | 0.8040 | 0.8040 | [0.7927347074267436, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.8040157247507503, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.608 | 0.7 | 28 | 4.6820 | 0.0794 | 0.8053 | 0.8053 | [0.7938510702940416, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.8053333643486208, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.4955 | 0.72 | 29 | 4.6511 | 0.0795 | 0.8062 | 0.8062 | [0.7946513690612669, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.8061980175109864, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.5359 | 0.75 | 30 | 4.6301 | 0.0794 | 0.8057 | 0.8057 | [0.7942641352298992, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.8056544337883806, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.4116 | 0.78 | 31 | 4.5990 | 0.0797 | 0.8094 | 0.8094 | [0.7974774354228353, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.8094237094324631, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.4995 | 0.8 | 32 | 4.5779 | 0.0798 | 0.8098 | 0.8098 | [0.7978091719139048, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.8097701828412411, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.5087 | 0.82 | 33 | 4.5585 | 0.0799 | 0.8112 | 0.8112 | [0.7989926828268309, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.8112010690479878, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.4534 | 0.85 | 34 | 4.5346 | 0.0799 | 0.8116 | 0.8116 | [0.7994616833790221, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.8116476279732591, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.4347 | 0.88 | 35 | 4.5080 | 0.0800 | 0.8121 | 0.8121 | [0.7999173944895492, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.8121012265525958, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.4389 | 0.9 | 36 | 4.4889 | 0.0800 | 0.8119 | 0.8119 | [0.7998204784246967, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.8119105437490014, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.428 | 0.93 | 37 | 4.4843 | 0.0799 | 0.8105 | 0.8105 | [0.7987525641385264, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.8105448508603376, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.5333 | 0.95 | 38 | 4.4847 | 0.0798 | 0.8094 | 0.8094 | [0.7978741861189972, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.8093536189637262, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.4458 | 0.97 | 39 | 4.4634 | 0.0798 | 0.8098 | 0.8098 | [0.7981748026222505, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.8097799771425493, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
4.4749 | 1.0 | 40 | 4.4405 | 0.0802 | 0.8142 | 0.8142 | [0.8018109121927621, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0] | [0.8141941463133944, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 4
Model tree for badinkajink/segformer-webots-grasp
Base model
nvidia/mit-b0