Badr Abdullah
End of training
eefc00e verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
  - generated_from_trainer
datasets:
  - common_voice_16_1
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-300m-upper-sorbian-cz-frozen-2-colab
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_16_1
          type: common_voice_16_1
          config: hsb
          split: test
          args: hsb
        metrics:
          - name: Wer
            type: wer
            value: 0.4301780693533271

wav2vec2-large-xls-r-300m-upper-sorbian-cz-frozen-2-colab

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice_16_1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7163
  • Wer: 0.4302
  • Cer: 0.1003

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 60
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.6172 3.23 100 0.6599 0.6999 0.1787
0.4414 6.45 200 0.6030 0.6251 0.1524
0.289 9.68 300 0.5899 0.5670 0.1336
0.1953 12.9 400 0.6095 0.5457 0.1308
0.1388 16.13 500 0.6628 0.5159 0.1224
0.1187 19.35 600 0.7075 0.4932 0.1180
0.0994 22.58 700 0.7131 0.4780 0.1143
0.0816 25.81 800 0.6959 0.4752 0.1101
0.0727 29.03 900 0.7201 0.4644 0.1104
0.0637 32.26 1000 0.7288 0.4630 0.1080
0.0592 35.48 1100 0.7219 0.4524 0.1056
0.0549 38.71 1200 0.7204 0.4480 0.1041
0.0473 41.94 1300 0.7238 0.4470 0.1048
0.0412 45.16 1400 0.7109 0.4278 0.1011
0.0423 48.39 1500 0.7252 0.4407 0.1045
0.0419 51.61 1600 0.7193 0.4393 0.1028
0.0365 54.84 1700 0.7231 0.4318 0.1010
0.0347 58.06 1800 0.7163 0.4302 0.1003

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2