whisper-base-np / README.md
bariumc's picture
End of training
05b229a verified
metadata
language:
  - nep
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper base nepali - Pujan paudel
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: ne-NP
          split: None
          args: 'config: ne-NP, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 75.9915014164306

Whisper base nepali - Pujan paudel

This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1173
  • Wer: 75.9915

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.039 16.1290 500 0.7968 77.1246
0.0014 32.2581 1000 1.0284 75.9207
0.0003 48.3871 1500 1.0966 75.8499
0.0003 64.5161 2000 1.1173 75.9915

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1