metadata
language:
- nep
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: Whisper base nepali - Pujan paudel
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 17.0
type: mozilla-foundation/common_voice_17_0
config: ne-NP
split: None
args: 'config: ne-NP, split: test'
metrics:
- name: Wer
type: wer
value: 75.9915014164306
Whisper base nepali - Pujan paudel
This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:
- Loss: 1.1173
- Wer: 75.9915
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.039 | 16.1290 | 500 | 0.7968 | 77.1246 |
0.0014 | 32.2581 | 1000 | 1.0284 | 75.9207 |
0.0003 | 48.3871 | 1500 | 1.0966 | 75.8499 |
0.0003 | 64.5161 | 2000 | 1.1173 | 75.9915 |
Framework versions
- Transformers 4.43.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1