structbert-large / README.md
bayartsogt's picture
Update README.md
2cc4087
|
raw
history blame
3.94 kB
# StructBERT: Un-Official Copy
Official Repository Link: https://github.com/alibaba/AliceMind/tree/main/StructBERT
**Claimer**
* This model card is not produced by [AliceMind Team](https://github.com/alibaba/AliceMind/)
## Reproduce HFHub models:
Download model/tokenizer vocab
```bash
wget https://raw.githubusercontent.com/alibaba/AliceMind/main/StructBERT/config/large_bert_config.json && mv large_bert_config.json config.json
wget https://raw.githubusercontent.com/alibaba/AliceMind/main/StructBERT/config/vocab.txt
wget https://alice-open.oss-cn-zhangjiakou.aliyuncs.com/StructBERT/en_model && mv en_model pytorch_model.bin
```
```python
from transformers import AutoConfig, AutoModelForMaskedLM, AutoTokenizer
config = AutoConfig.from_pretrained("./config.json")
model = AutoModelForMaskedLM.from_pretrained(".", config=config)
tokenizer = AutoTokenizer.from_pretrained(".", config=config)
model.push_to_hub("structbert-large")
tokenizer.push_to_hub("structbert-large")
```
[https://arxiv.org/abs/1908.04577](https://arxiv.org/abs/1908.04577)
# StructBERT: Incorporating Language Structures into Pre-training for Deep Language Understanding
## Introduction
We extend BERT to a new model, StructBERT, by incorporating language structures into pre-training.
Specifically, we pre-train StructBERT with two auxiliary tasks to make the most of the sequential
order of words and sentences, which leverage language structures at the word and sentence levels,
respectively.
## Pre-trained models
|Model | Description | #params | Download |
|------------------------|-------------------------------------------|------|------|
|structbert.en.large | StructBERT using the BERT-large architecture | 340M | [structbert.en.large](https://alice-open.oss-cn-zhangjiakou.aliyuncs.com/StructBERT/en_model) |
|structroberta.en.large | StructRoBERTa continue training from RoBERTa | 355M | Coming soon |
|structbert.ch.large | Chinese StructBERT; BERT-large architecture | 330M | [structbert.ch.large](https://alice-open.oss-cn-zhangjiakou.aliyuncs.com/StructBERT/ch_model) |
## Results
The results of GLUE & CLUE tasks can be reproduced using the hyperparameters listed in the following "Example usage" section.
#### structbert.en.large
[GLUE benchmark](https://gluebenchmark.com/leaderboard)
|Model| MNLI | QNLIv2 | QQP | SST-2 | MRPC |
|--------------------|-------|-------|-------|-------|-------|
|structbert.en.large |86.86% |93.04% |91.67% |93.23% |86.51% |
#### structbert.ch.large
[CLUE benchmark](https://www.cluebenchmarks.com/)
|Model | CMNLI | OCNLI | TNEWS | AFQMC |
|--------------------|-------|-------|-------|-------|
|structbert.ch.large |84.47% |81.28% |68.67% |76.11% |
## Example usage
#### Requirements and Installation
* [PyTorch](https://pytorch.org/) version >= 1.0.1
* Install other libraries via
```
pip install -r requirements.txt
```
* For faster training install NVIDIA's [apex](https://github.com/NVIDIA/apex) library
#### Finetune MNLI
```
python run_classifier_multi_task.py \
--task_name MNLI \
--do_train \
--do_eval \
--do_test \
--amp_type O1 \
--lr_decay_factor 1 \
--dropout 0.1 \
--do_lower_case \
--detach_index -1 \
--core_encoder bert \
--data_dir path_to_glue_data \
--vocab_file config/vocab.txt \
--bert_config_file config/large_bert_config.json \
--init_checkpoint path_to_pretrained_model \
--max_seq_length 128 \
--train_batch_size 32 \
--learning_rate 2e-5 \
--num_train_epochs 3 \
--fast_train \
--gradient_accumulation_steps 1 \
--output_dir path_to_output_dir
```
## Citation
If you use our work, please cite:
```
@article{wang2019structbert,
title={Structbert: Incorporating language structures into pre-training for deep language understanding},
author={Wang, Wei and Bi, Bin and Yan, Ming and Wu, Chen and Bao, Zuyi and Xia, Jiangnan and Peng, Liwei and Si, Luo},
journal={arXiv preprint arXiv:1908.04577},
year={2019}
}
```