SciBERT_100K_steps
This model is a fine-tuned version of allenai/scibert_scivocab_uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0144
- Accuracy: 0.9947
- Precision: 0.7850
- Recall: 0.6355
- F1: 0.7024
- Hamming: 0.0053
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 100000
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Hamming |
---|---|---|---|---|---|---|---|---|
0.1681 | 0.08 | 5000 | 0.0487 | 0.9902 | 0.0 | 0.0 | 0.0 | 0.0098 |
0.032 | 0.16 | 10000 | 0.0223 | 0.9930 | 0.8068 | 0.3728 | 0.5100 | 0.0070 |
0.0201 | 0.24 | 15000 | 0.0186 | 0.9937 | 0.7815 | 0.4970 | 0.6076 | 0.0063 |
0.018 | 0.32 | 20000 | 0.0172 | 0.9941 | 0.7763 | 0.5550 | 0.6472 | 0.0059 |
0.017 | 0.4 | 25000 | 0.0166 | 0.9942 | 0.7864 | 0.5624 | 0.6558 | 0.0058 |
0.0166 | 0.47 | 30000 | 0.0163 | 0.9943 | 0.7707 | 0.5880 | 0.6671 | 0.0057 |
0.0163 | 0.55 | 35000 | 0.0160 | 0.9943 | 0.7802 | 0.5809 | 0.6659 | 0.0057 |
0.0159 | 0.63 | 40000 | 0.0158 | 0.9944 | 0.7719 | 0.6012 | 0.6759 | 0.0056 |
0.0157 | 0.71 | 45000 | 0.0155 | 0.9945 | 0.7750 | 0.6104 | 0.6829 | 0.0055 |
0.0154 | 0.79 | 50000 | 0.0153 | 0.9945 | 0.7734 | 0.6202 | 0.6884 | 0.0055 |
0.0153 | 0.87 | 55000 | 0.0151 | 0.9945 | 0.7823 | 0.6072 | 0.6837 | 0.0055 |
0.0152 | 0.95 | 60000 | 0.0151 | 0.9945 | 0.7813 | 0.6124 | 0.6866 | 0.0055 |
0.0148 | 1.03 | 65000 | 0.0149 | 0.9946 | 0.7843 | 0.6208 | 0.6930 | 0.0054 |
0.0143 | 1.11 | 70000 | 0.0148 | 0.9946 | 0.7802 | 0.6231 | 0.6929 | 0.0054 |
0.0142 | 1.19 | 75000 | 0.0148 | 0.9946 | 0.7714 | 0.6377 | 0.6982 | 0.0054 |
0.0141 | 1.27 | 80000 | 0.0146 | 0.9947 | 0.7837 | 0.6281 | 0.6973 | 0.0053 |
0.0141 | 1.34 | 85000 | 0.0146 | 0.9947 | 0.7836 | 0.6374 | 0.7030 | 0.0053 |
0.014 | 1.42 | 90000 | 0.0145 | 0.9947 | 0.7859 | 0.6326 | 0.7010 | 0.0053 |
0.0139 | 1.5 | 95000 | 0.0145 | 0.9947 | 0.7875 | 0.6317 | 0.7010 | 0.0053 |
0.0139 | 1.58 | 100000 | 0.0144 | 0.9947 | 0.7850 | 0.6355 | 0.7024 | 0.0053 |
Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.7.1
- Tokenizers 0.14.1
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for bdpc/SciBERT_100K_steps
Base model
allenai/scibert_scivocab_uncased