|
--- |
|
base_model: allenai/scibert_scivocab_uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: SciBERT_TwoWayLoss_25K_bs64_P10_N5 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# SciBERT_TwoWayLoss_25K_bs64_P10_N5 |
|
|
|
This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 15.1250 |
|
- Accuracy: 0.7066 |
|
- Precision: 0.0321 |
|
- Recall: 0.9982 |
|
- F1: 0.0622 |
|
- Hamming: 0.2934 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- training_steps: 25000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Hamming | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| |
|
| 28.5732 | 0.16 | 5000 | 26.4288 | 0.6945 | 0.0307 | 0.9910 | 0.0595 | 0.3055 | |
|
| 19.8755 | 0.32 | 10000 | 18.9620 | 0.7010 | 0.0315 | 0.9959 | 0.0610 | 0.2990 | |
|
| 17.1294 | 0.47 | 15000 | 16.5587 | 0.7021 | 0.0316 | 0.9970 | 0.0613 | 0.2979 | |
|
| 15.8209 | 0.63 | 20000 | 15.4919 | 0.7053 | 0.0320 | 0.9982 | 0.0620 | 0.2947 | |
|
| 15.4304 | 0.79 | 25000 | 15.1250 | 0.7066 | 0.0321 | 0.9982 | 0.0622 | 0.2934 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.2.0.dev20231002 |
|
- Datasets 2.7.1 |
|
- Tokenizers 0.13.3 |
|
|