bdpc's picture
Saving best model of SciBERT_twowayloss_25K_bs64 to hub
2c0f5f2 verified
|
raw
history blame
2.08 kB
metadata
base_model: allenai/scibert_scivocab_uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: SciBERT_twowayloss_25K_bs64
    results: []

SciBERT_twowayloss_25K_bs64

This model is a fine-tuned version of allenai/scibert_scivocab_uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0158
  • Accuracy: 0.9945
  • Precision: 0.7948
  • Recall: 0.5830
  • F1: 0.6727
  • Hamming: 0.0055

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 25000

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Hamming
0.0332 0.16 5000 0.0283 0.9921 0.8249 0.2410 0.3730 0.0079
0.0195 0.32 10000 0.0186 0.9939 0.7964 0.4983 0.6131 0.0061
0.0173 0.47 15000 0.0168 0.9943 0.7936 0.5587 0.6557 0.0057
0.0165 0.63 20000 0.0161 0.9944 0.7949 0.5782 0.6694 0.0056
0.0161 0.79 25000 0.0158 0.9945 0.7948 0.5830 0.6727 0.0055

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.7.1
  • Tokenizers 0.14.1