metadata
base_model: allenai/scibert_scivocab_uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: test_AsymmetricLoss_25K_bs64_P4_N1
results: []
test_AsymmetricLoss_25K_bs64_P4_N1
This model is a fine-tuned version of allenai/scibert_scivocab_uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6203
- Accuracy: 0.7448
- Precision: 0.0101
- Recall: 0.2592
- F1: 0.0194
- Hamming: 0.2552
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 40
- eval_batch_size: 40
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Hamming |
---|---|---|---|---|---|---|---|---|
0.6901 | 0.0 | 5 | 0.6457 | 0.6626 | 0.0099 | 0.3394 | 0.0192 | 0.3374 |
0.6344 | 0.0 | 10 | 0.6203 | 0.7448 | 0.0101 | 0.2592 | 0.0194 | 0.2552 |
Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.7.1
- Tokenizers 0.14.1