metadata
license: creativeml-openrail-m
base_model: ptx0/terminus-xl-velocity-v2
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- simpletuner
- full
inference: true
widget:
- text: unconditional (blank prompt)
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_0_0.png
- text: two young girls in a classroom setting appearing surprised or concerned
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_1_0.png
smoldit-base-test
This is a full rank finetune derived from ptx0/terminus-xl-velocity-v2.
The main validation prompt used during training was:
two young girls in a classroom setting appearing surprised or concerned
Validation settings
- CFG:
4.0
- CFG Rescale:
0.7
- Steps:
30
- Sampler:
ddpm
- Seed:
420420420
- Resolution:
256
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 360
- Training steps: 167000
- Learning rate: 1e-05
- Effective batch size: 16
- Micro-batch size: 16
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Prediction type: v_prediction
- Rescaled betas zero SNR: True
- Optimizer: AdamW, stochastic bf16
- Precision: Pure BF16
- Xformers: Enabled
Datasets
cinemamix-1mp
- Repeats: 0
- Total number of images: 7408
- Total number of aspect buckets: 1
- Resolution: 256 px
- Cropped: True
- Crop style: center
- Crop aspect: square
Inference
import torch
from diffusers import DiffusionPipeline
model_id = 'smoldit-base-test'
pipeline = DiffusionPipeline.from_pretrained(model_id)
prompt = "two young girls in a classroom setting appearing surprised or concerned"
negative_prompt = "blurry, cropped, ugly"
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
negative_prompt='blurry, cropped, ugly',
num_inference_steps=30,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1152,
height=768,
guidance_scale=4.0,
guidance_rescale=0.7,
).images[0]
image.save("output.png", format="PNG")