smoldit-base-test / README.md
PseudoTerminal X
Trained for 360 epochs and 167000 steps.
16515e5 verified
metadata
license: creativeml-openrail-m
base_model: ptx0/terminus-xl-velocity-v2
tags:
  - stable-diffusion
  - stable-diffusion-diffusers
  - text-to-image
  - diffusers
  - simpletuner
  - full
inference: true
widget:
  - text: unconditional (blank prompt)
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_0_0.png
  - text: two young girls in a classroom setting appearing surprised or concerned
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_1_0.png

smoldit-base-test

This is a full rank finetune derived from ptx0/terminus-xl-velocity-v2.

The main validation prompt used during training was:

two young girls in a classroom setting appearing surprised or concerned

Validation settings

  • CFG: 4.0
  • CFG Rescale: 0.7
  • Steps: 30
  • Sampler: ddpm
  • Seed: 420420420
  • Resolution: 256

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
two young girls in a classroom setting appearing surprised or concerned
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 360
  • Training steps: 167000
  • Learning rate: 1e-05
  • Effective batch size: 16
    • Micro-batch size: 16
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Prediction type: v_prediction
  • Rescaled betas zero SNR: True
  • Optimizer: AdamW, stochastic bf16
  • Precision: Pure BF16
  • Xformers: Enabled

Datasets

cinemamix-1mp

  • Repeats: 0
  • Total number of images: 7408
  • Total number of aspect buckets: 1
  • Resolution: 256 px
  • Cropped: True
  • Crop style: center
  • Crop aspect: square

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'smoldit-base-test'
pipeline = DiffusionPipeline.from_pretrained(model_id)

prompt = "two young girls in a classroom setting appearing surprised or concerned"
negative_prompt = "blurry, cropped, ugly"

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    negative_prompt='blurry, cropped, ugly',
    num_inference_steps=30,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1152,
    height=768,
    guidance_scale=4.0,
    guidance_rescale=0.7,
).images[0]
image.save("output.png", format="PNG")