|
--- |
|
license: apache-2.0 |
|
base_model: openai/whisper-tiny |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: whisper_syl_cv12_pad_lob100__0080 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper_syl_cv12_pad_lob100__0080 |
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.0003 |
|
- Train Accuracy: 0.0362 |
|
- Train Wermet: 1.0294 |
|
- Validation Loss: 0.6021 |
|
- Validation Accuracy: 0.0240 |
|
- Validation Wermet: 2.5022 |
|
- Epoch: 79 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |
|
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| |
|
| 5.0233 | 0.0115 | 1.6383 | 3.8616 | 0.0117 | 0.9516 | 0 | |
|
| 4.4412 | 0.0127 | 0.8560 | 3.5410 | 0.0125 | 0.8971 | 1 | |
|
| 4.0719 | 0.0138 | 0.8366 | 3.2944 | 0.0132 | 0.8706 | 2 | |
|
| 3.8091 | 0.0146 | 0.8133 | 3.1691 | 0.0134 | 0.8487 | 3 | |
|
| 3.6239 | 0.0152 | 0.7866 | 3.0647 | 0.0136 | 0.8282 | 4 | |
|
| 3.4749 | 0.0156 | 0.7589 | 2.9835 | 0.0139 | 0.8049 | 5 | |
|
| 3.3444 | 0.0161 | 0.7359 | 2.9351 | 0.0140 | 0.7979 | 6 | |
|
| 3.2215 | 0.0165 | 0.7138 | 2.8468 | 0.0145 | 0.7589 | 7 | |
|
| 3.0754 | 0.0172 | 0.6873 | 2.7530 | 0.0148 | 0.7413 | 8 | |
|
| 2.8713 | 0.0181 | 0.6484 | 2.5226 | 0.0157 | 0.7017 | 9 | |
|
| 2.5469 | 0.0197 | 0.5934 | 2.1931 | 0.0168 | 0.6285 | 10 | |
|
| 2.0233 | 0.0225 | 0.4997 | 1.6411 | 0.0189 | 0.5215 | 11 | |
|
| 1.3808 | 0.0264 | 0.3852 | 1.2401 | 0.0205 | 0.4238 | 12 | |
|
| 0.9722 | 0.0290 | 0.3123 | 1.0195 | 0.0215 | 0.3682 | 13 | |
|
| 0.7388 | 0.0305 | 0.2828 | 0.8773 | 0.0221 | 0.3322 | 14 | |
|
| 0.5787 | 0.0317 | 0.2751 | 0.7970 | 0.0225 | 0.3083 | 15 | |
|
| 0.4642 | 0.0325 | 0.2878 | 0.7315 | 0.0227 | 0.2964 | 16 | |
|
| 0.3752 | 0.0332 | 0.4217 | 0.6897 | 0.0229 | 0.3297 | 17 | |
|
| 0.3042 | 0.0338 | 0.7294 | 0.6572 | 0.0231 | 0.4453 | 18 | |
|
| 0.2444 | 0.0343 | 1.1298 | 0.6369 | 0.0232 | 0.6637 | 19 | |
|
| 0.1949 | 0.0348 | 1.6370 | 0.6180 | 0.0233 | 1.6119 | 20 | |
|
| 0.1544 | 0.0352 | 1.6151 | 0.6149 | 0.0233 | 1.6843 | 21 | |
|
| 0.1212 | 0.0355 | 1.3832 | 0.6066 | 0.0233 | 0.8721 | 22 | |
|
| 0.0931 | 0.0357 | 1.2799 | 0.6034 | 0.0234 | 0.5109 | 23 | |
|
| 0.0725 | 0.0359 | 1.0940 | 0.6102 | 0.0234 | 1.0111 | 24 | |
|
| 0.0551 | 0.0361 | 1.2865 | 0.6000 | 0.0234 | 1.1393 | 25 | |
|
| 0.0411 | 0.0361 | 1.8511 | 0.6037 | 0.0235 | 2.0574 | 26 | |
|
| 0.0311 | 0.0362 | 1.7179 | 0.6018 | 0.0235 | 1.4847 | 27 | |
|
| 0.0253 | 0.0362 | 0.9801 | 0.6010 | 0.0235 | 0.4457 | 28 | |
|
| 0.0231 | 0.0362 | 0.9376 | 0.6046 | 0.0235 | 0.9247 | 29 | |
|
| 0.0196 | 0.0362 | 0.6466 | 0.6078 | 0.0235 | 0.5271 | 30 | |
|
| 0.0177 | 0.0362 | 0.4041 | 0.6155 | 0.0235 | 0.4352 | 31 | |
|
| 0.0139 | 0.0362 | 0.4202 | 0.6037 | 0.0236 | 0.5585 | 32 | |
|
| 0.0137 | 0.0362 | 0.8151 | 0.6015 | 0.0236 | 1.8476 | 33 | |
|
| 0.0122 | 0.0362 | 3.4515 | 0.6043 | 0.0236 | 3.8210 | 34 | |
|
| 0.0098 | 0.0362 | 1.1787 | 0.5985 | 0.0236 | 0.8094 | 35 | |
|
| 0.0071 | 0.0362 | 0.9920 | 0.5992 | 0.0236 | 0.8755 | 36 | |
|
| 0.0055 | 0.0362 | 2.4665 | 0.6047 | 0.0236 | 2.0127 | 37 | |
|
| 0.0124 | 0.0362 | 4.2468 | 0.6089 | 0.0236 | 2.8886 | 38 | |
|
| 0.0109 | 0.0362 | 2.0177 | 0.6097 | 0.0236 | 0.3417 | 39 | |
|
| 0.0073 | 0.0362 | 0.9927 | 0.6057 | 0.0237 | 2.5519 | 40 | |
|
| 0.0080 | 0.0362 | 1.7341 | 0.6099 | 0.0236 | 1.3119 | 41 | |
|
| 0.0063 | 0.0362 | 2.4288 | 0.6058 | 0.0237 | 1.3465 | 42 | |
|
| 0.0038 | 0.0362 | 1.4535 | 0.6022 | 0.0237 | 1.6804 | 43 | |
|
| 0.0028 | 0.0362 | 2.2629 | 0.6001 | 0.0238 | 3.4388 | 44 | |
|
| 0.0021 | 0.0362 | 3.5877 | 0.6018 | 0.0238 | 2.6165 | 45 | |
|
| 0.0017 | 0.0362 | 3.0080 | 0.6043 | 0.0238 | 2.6827 | 46 | |
|
| 0.0061 | 0.0362 | 2.5182 | 0.6545 | 0.0235 | 0.2316 | 47 | |
|
| 0.0126 | 0.0362 | 0.2097 | 0.6206 | 0.0236 | 0.6194 | 48 | |
|
| 0.0071 | 0.0362 | 0.3045 | 0.6047 | 0.0237 | 0.7476 | 49 | |
|
| 0.0053 | 0.0362 | 1.2045 | 0.6010 | 0.0238 | 0.6553 | 50 | |
|
| 0.0040 | 0.0362 | 0.2626 | 0.5964 | 0.0238 | 0.7027 | 51 | |
|
| 0.0021 | 0.0362 | 0.5023 | 0.5950 | 0.0238 | 0.3812 | 52 | |
|
| 0.0014 | 0.0362 | 0.7108 | 0.6233 | 0.0237 | 1.4647 | 53 | |
|
| 0.0017 | 0.0362 | 0.3475 | 0.6087 | 0.0238 | 0.2213 | 54 | |
|
| 0.0011 | 0.0362 | 0.1825 | 0.5984 | 0.0239 | 0.2391 | 55 | |
|
| 0.0021 | 0.0362 | 1.0757 | 0.6211 | 0.0238 | 7.3766 | 56 | |
|
| 0.0078 | 0.0362 | 2.1996 | 0.6349 | 0.0237 | 5.2774 | 57 | |
|
| 0.0071 | 0.0362 | 1.2499 | 0.6225 | 0.0237 | 0.9927 | 58 | |
|
| 0.0045 | 0.0362 | 5.3986 | 0.6088 | 0.0238 | 27.5186 | 59 | |
|
| 0.0027 | 0.0362 | 9.4813 | 0.6035 | 0.0239 | 0.2741 | 60 | |
|
| 0.0015 | 0.0362 | 20.4251 | 0.6005 | 0.0239 | 73.4792 | 61 | |
|
| 0.0012 | 0.0362 | 17.1227 | 0.6148 | 0.0238 | 4.2506 | 62 | |
|
| 0.0024 | 0.0362 | 3.7081 | 0.6249 | 0.0238 | 5.8937 | 63 | |
|
| 0.0050 | 0.0362 | 2.2590 | 0.6136 | 0.0238 | 9.6813 | 64 | |
|
| 0.0026 | 0.0362 | 3.1954 | 0.6060 | 0.0239 | 15.4541 | 65 | |
|
| 0.0032 | 0.0362 | 5.1838 | 0.6233 | 0.0238 | 10.2566 | 66 | |
|
| 0.0053 | 0.0362 | 3.1310 | 0.6178 | 0.0239 | 1.4216 | 67 | |
|
| 0.0030 | 0.0362 | 1.1169 | 0.6106 | 0.0239 | 0.9273 | 68 | |
|
| 0.0018 | 0.0362 | 0.9183 | 0.6034 | 0.0239 | 1.7868 | 69 | |
|
| 0.0011 | 0.0362 | 0.3862 | 0.6116 | 0.0239 | 0.5909 | 70 | |
|
| 0.0014 | 0.0362 | 0.6235 | 0.6143 | 0.0239 | 0.9794 | 71 | |
|
| 0.0025 | 0.0362 | 0.5583 | 0.6510 | 0.0237 | 0.3524 | 72 | |
|
| 0.0058 | 0.0362 | 1.9614 | 0.6179 | 0.0239 | 1.2838 | 73 | |
|
| 0.0029 | 0.0362 | 0.6039 | 0.6222 | 0.0239 | 3.0512 | 74 | |
|
| 0.0013 | 0.0362 | 0.8265 | 0.6088 | 0.0239 | 1.1328 | 75 | |
|
| 0.0008 | 0.0362 | 0.9354 | 0.6003 | 0.0240 | 4.7201 | 76 | |
|
| 0.0008 | 0.0362 | 2.7001 | 0.6041 | 0.0240 | 6.5868 | 77 | |
|
| 0.0005 | 0.0362 | 1.6010 | 0.6025 | 0.0240 | 3.0820 | 78 | |
|
| 0.0003 | 0.0362 | 1.0294 | 0.6021 | 0.0240 | 2.5022 | 79 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.0.dev0 |
|
- TensorFlow 2.13.0 |
|
- Tokenizers 0.13.3 |
|
|