whisper_syl_cv12_pad_lob100_low__0135
This model is a fine-tuned version of openai/whisper-tiny on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0001
- Train Accuracy: 0.0362
- Train Wermet: 0.0011
- Validation Loss: 0.7303
- Validation Accuracy: 0.0236
- Validation Wermet: 0.2229
- Epoch: 134
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
---|---|---|---|---|---|---|
5.2930 | 0.0113 | 2.0658 | 3.9415 | 0.0117 | 0.9401 | 0 |
4.6215 | 0.0121 | 0.8917 | 3.7803 | 0.0120 | 0.9294 | 1 |
4.4086 | 0.0128 | 0.8403 | 3.6070 | 0.0124 | 0.9223 | 2 |
4.1842 | 0.0135 | 0.8337 | 3.4291 | 0.0128 | 0.8867 | 3 |
3.9981 | 0.0141 | 0.8182 | 3.3251 | 0.0131 | 0.8750 | 4 |
3.8531 | 0.0145 | 0.8058 | 3.2385 | 0.0133 | 0.8699 | 5 |
3.7345 | 0.0149 | 0.7925 | 3.1751 | 0.0134 | 0.8665 | 6 |
3.6307 | 0.0152 | 0.7851 | 3.1031 | 0.0136 | 0.8507 | 7 |
3.5437 | 0.0155 | 0.7717 | 3.0752 | 0.0138 | 0.8286 | 8 |
3.4649 | 0.0157 | 0.7651 | 3.0334 | 0.0139 | 0.8417 | 9 |
3.3926 | 0.0159 | 0.7531 | 3.0022 | 0.0139 | 0.8413 | 10 |
3.3262 | 0.0162 | 0.7462 | 2.9669 | 0.0140 | 0.8264 | 11 |
3.2625 | 0.0164 | 0.7367 | 2.9342 | 0.0141 | 0.8520 | 12 |
3.1979 | 0.0166 | 0.7231 | 2.9046 | 0.0144 | 0.8196 | 13 |
3.1319 | 0.0169 | 0.7133 | 2.8607 | 0.0145 | 0.8026 | 14 |
3.0616 | 0.0172 | 0.7007 | 2.8165 | 0.0146 | 0.7788 | 15 |
2.9792 | 0.0176 | 0.6816 | 2.7552 | 0.0149 | 0.7643 | 16 |
2.8905 | 0.0180 | 0.6641 | 2.6788 | 0.0151 | 0.7473 | 17 |
2.7749 | 0.0186 | 0.6424 | 2.5824 | 0.0155 | 0.7241 | 18 |
2.6263 | 0.0193 | 0.6159 | 2.4206 | 0.0161 | 0.7047 | 19 |
2.4352 | 0.0203 | 0.5829 | 2.2230 | 0.0168 | 0.6500 | 20 |
2.1941 | 0.0216 | 0.5411 | 2.0349 | 0.0175 | 0.5980 | 21 |
1.9184 | 0.0231 | 0.4922 | 1.7850 | 0.0184 | 0.5659 | 22 |
1.6174 | 0.0249 | 0.4371 | 1.5664 | 0.0192 | 0.5081 | 23 |
1.3542 | 0.0265 | 0.3851 | 1.3992 | 0.0199 | 0.4690 | 24 |
1.1499 | 0.0278 | 0.3408 | 1.2512 | 0.0205 | 0.4299 | 25 |
0.9878 | 0.0288 | 0.3029 | 1.1479 | 0.0209 | 0.4013 | 26 |
0.8600 | 0.0297 | 0.2735 | 1.0527 | 0.0213 | 0.3755 | 27 |
0.7516 | 0.0305 | 0.2441 | 0.9803 | 0.0216 | 0.3570 | 28 |
0.6626 | 0.0311 | 0.2197 | 0.9314 | 0.0219 | 0.3416 | 29 |
0.5863 | 0.0316 | 0.1993 | 0.8730 | 0.0221 | 0.3238 | 30 |
0.5187 | 0.0321 | 0.1775 | 0.8357 | 0.0223 | 0.3136 | 31 |
0.4608 | 0.0326 | 0.1610 | 0.8059 | 0.0224 | 0.3033 | 32 |
0.4087 | 0.0330 | 0.1467 | 0.7746 | 0.0226 | 0.2949 | 33 |
0.3642 | 0.0334 | 0.1298 | 0.7476 | 0.0227 | 0.2847 | 34 |
0.3221 | 0.0337 | 0.1168 | 0.7330 | 0.0228 | 0.2802 | 35 |
0.2837 | 0.0340 | 0.1030 | 0.7093 | 0.0229 | 0.2728 | 36 |
0.2509 | 0.0343 | 0.0882 | 0.6941 | 0.0229 | 0.2687 | 37 |
0.2209 | 0.0346 | 0.0747 | 0.6892 | 0.0230 | 0.2656 | 38 |
0.1934 | 0.0349 | 0.0670 | 0.6824 | 0.0230 | 0.2630 | 39 |
0.1688 | 0.0351 | 0.0542 | 0.6773 | 0.0230 | 0.2625 | 40 |
0.1469 | 0.0353 | 0.0429 | 0.6700 | 0.0231 | 0.2633 | 41 |
0.1268 | 0.0355 | 0.0365 | 0.6680 | 0.0231 | 0.2578 | 42 |
0.1086 | 0.0357 | 0.0284 | 0.6643 | 0.0231 | 0.2540 | 43 |
0.0920 | 0.0358 | 0.0221 | 0.6645 | 0.0231 | 0.2530 | 44 |
0.0783 | 0.0359 | 0.0169 | 0.6621 | 0.0232 | 0.2540 | 45 |
0.0667 | 0.0360 | 0.0121 | 0.6714 | 0.0232 | 0.2532 | 46 |
0.0563 | 0.0361 | 0.0094 | 0.6604 | 0.0232 | 0.2503 | 47 |
0.0477 | 0.0361 | 0.0072 | 0.6620 | 0.0232 | 0.2489 | 48 |
0.0397 | 0.0362 | 0.0055 | 0.6611 | 0.0232 | 0.2502 | 49 |
0.0330 | 0.0362 | 0.0045 | 0.6686 | 0.0232 | 0.2496 | 50 |
0.0283 | 0.0362 | 0.0033 | 0.6705 | 0.0232 | 0.2503 | 51 |
0.0242 | 0.0362 | 0.0034 | 0.6686 | 0.0232 | 0.2486 | 52 |
0.0212 | 0.0362 | 0.0031 | 0.6686 | 0.0232 | 0.2493 | 53 |
0.0197 | 0.0362 | 0.0028 | 0.6688 | 0.0232 | 0.2530 | 54 |
0.0226 | 0.0362 | 0.0041 | 0.6598 | 0.0233 | 0.2451 | 55 |
0.0158 | 0.0362 | 0.0024 | 0.6605 | 0.0233 | 0.2428 | 56 |
0.0115 | 0.0362 | 0.0018 | 0.6648 | 0.0233 | 0.2435 | 57 |
0.0094 | 0.0362 | 0.0017 | 0.6672 | 0.0233 | 0.2446 | 58 |
0.0081 | 0.0362 | 0.0018 | 0.6731 | 0.0233 | 0.2439 | 59 |
0.0071 | 0.0362 | 0.0017 | 0.6762 | 0.0233 | 0.2429 | 60 |
0.0062 | 0.0362 | 0.0017 | 0.6794 | 0.0233 | 0.2426 | 61 |
0.0055 | 0.0362 | 0.0017 | 0.6825 | 0.0233 | 0.2429 | 62 |
0.0048 | 0.0362 | 0.0017 | 0.6895 | 0.0233 | 0.2450 | 63 |
0.0042 | 0.0362 | 0.0019 | 0.6914 | 0.0233 | 0.2424 | 64 |
0.0037 | 0.0362 | 0.0018 | 0.6938 | 0.0233 | 0.2423 | 65 |
0.0224 | 0.0361 | 0.0080 | 0.6695 | 0.0234 | 0.2409 | 66 |
0.0127 | 0.0362 | 0.0037 | 0.6685 | 0.0234 | 0.2383 | 67 |
0.0065 | 0.0362 | 0.0017 | 0.6714 | 0.0234 | 0.2359 | 68 |
0.0045 | 0.0362 | 0.0017 | 0.6645 | 0.0234 | 0.2347 | 69 |
0.0034 | 0.0362 | 0.0016 | 0.6671 | 0.0234 | 0.2353 | 70 |
0.0028 | 0.0362 | 0.0014 | 0.6715 | 0.0234 | 0.2354 | 71 |
0.0024 | 0.0362 | 0.0014 | 0.6745 | 0.0234 | 0.2358 | 72 |
0.0022 | 0.0362 | 0.0014 | 0.6778 | 0.0234 | 0.2356 | 73 |
0.0020 | 0.0362 | 0.0013 | 0.6797 | 0.0234 | 0.2357 | 74 |
0.0018 | 0.0362 | 0.0014 | 0.6833 | 0.0234 | 0.2355 | 75 |
0.0016 | 0.0362 | 0.0013 | 0.6885 | 0.0234 | 0.2363 | 76 |
0.0068 | 0.0362 | 0.0035 | 0.7270 | 0.0232 | 0.2500 | 77 |
0.0131 | 0.0362 | 0.0076 | 0.6965 | 0.0234 | 0.2397 | 78 |
0.0054 | 0.0362 | 0.0088 | 0.6764 | 0.0235 | 0.2339 | 79 |
0.0029 | 0.0362 | 0.0041 | 0.6806 | 0.0235 | 0.2334 | 80 |
0.0019 | 0.0362 | 0.0039 | 0.6723 | 0.0235 | 0.2316 | 81 |
0.0016 | 0.0362 | 0.0028 | 0.6765 | 0.0235 | 0.2315 | 82 |
0.0014 | 0.0362 | 0.0025 | 0.6786 | 0.0235 | 0.2306 | 83 |
0.0013 | 0.0362 | 0.0023 | 0.6805 | 0.0235 | 0.2304 | 84 |
0.0012 | 0.0362 | 0.0022 | 0.6830 | 0.0235 | 0.2301 | 85 |
0.0011 | 0.0362 | 0.0022 | 0.6881 | 0.0235 | 0.2308 | 86 |
0.0010 | 0.0362 | 0.0022 | 0.6875 | 0.0235 | 0.2303 | 87 |
0.0009 | 0.0362 | 0.0022 | 0.6909 | 0.0235 | 0.2307 | 88 |
0.0008 | 0.0362 | 0.0020 | 0.6934 | 0.0235 | 0.2299 | 89 |
0.0007 | 0.0362 | 0.0022 | 0.6968 | 0.0235 | 0.2307 | 90 |
0.0007 | 0.0362 | 0.0020 | 0.7005 | 0.0235 | 0.2300 | 91 |
0.0006 | 0.0362 | 0.0021 | 0.7040 | 0.0235 | 0.2307 | 92 |
0.0006 | 0.0362 | 0.0020 | 0.7086 | 0.0235 | 0.2309 | 93 |
0.0005 | 0.0362 | 0.0020 | 0.7116 | 0.0235 | 0.2318 | 94 |
0.0005 | 0.0362 | 0.0018 | 0.7151 | 0.0235 | 0.2305 | 95 |
0.0111 | 0.0362 | 0.2014 | 0.7185 | 0.0234 | 0.2861 | 96 |
0.0069 | 0.0362 | 0.0051 | 0.7036 | 0.0235 | 0.2337 | 97 |
0.0028 | 0.0362 | 0.0015 | 0.6946 | 0.0235 | 0.2324 | 98 |
0.0023 | 0.0362 | 0.0018 | 0.6937 | 0.0235 | 0.2295 | 99 |
0.0017 | 0.0362 | 0.0013 | 0.6886 | 0.0235 | 0.2283 | 100 |
0.0010 | 0.0362 | 0.0008 | 0.6891 | 0.0236 | 0.2274 | 101 |
0.0009 | 0.0362 | 0.0013 | 0.6901 | 0.0236 | 0.2275 | 102 |
0.0008 | 0.0362 | 0.0015 | 0.6922 | 0.0236 | 0.2273 | 103 |
0.0006 | 0.0362 | 0.0015 | 0.6923 | 0.0236 | 0.2274 | 104 |
0.0008 | 0.0362 | 0.0014 | 0.6996 | 0.0235 | 0.2288 | 105 |
0.0006 | 0.0362 | 0.0014 | 0.6967 | 0.0236 | 0.2266 | 106 |
0.0005 | 0.0362 | 0.0013 | 0.6988 | 0.0236 | 0.2260 | 107 |
0.0004 | 0.0362 | 0.0027 | 0.7008 | 0.0236 | 0.2278 | 108 |
0.0004 | 0.0362 | 0.0017 | 0.7034 | 0.0236 | 0.2261 | 109 |
0.0004 | 0.0362 | 0.0018 | 0.7036 | 0.0236 | 0.2265 | 110 |
0.0004 | 0.0362 | 0.0015 | 0.7090 | 0.0236 | 0.2255 | 111 |
0.0112 | 0.0362 | 0.0059 | 0.7014 | 0.0235 | 0.2271 | 112 |
0.0034 | 0.0362 | 0.0023 | 0.6869 | 0.0236 | 0.2252 | 113 |
0.0015 | 0.0362 | 0.0015 | 0.6863 | 0.0236 | 0.2234 | 114 |
0.0008 | 0.0362 | 0.0010 | 0.6893 | 0.0236 | 0.2227 | 115 |
0.0006 | 0.0362 | 0.0011 | 0.6911 | 0.0236 | 0.2232 | 116 |
0.0005 | 0.0362 | 0.0009 | 0.6923 | 0.0236 | 0.2227 | 117 |
0.0004 | 0.0362 | 0.0009 | 0.6938 | 0.0236 | 0.2225 | 118 |
0.0004 | 0.0362 | 0.0010 | 0.6958 | 0.0236 | 0.2226 | 119 |
0.0003 | 0.0362 | 0.0010 | 0.6966 | 0.0236 | 0.2226 | 120 |
0.0003 | 0.0362 | 0.0010 | 0.6983 | 0.0236 | 0.2230 | 121 |
0.0003 | 0.0362 | 0.0010 | 0.7005 | 0.0236 | 0.2229 | 122 |
0.0003 | 0.0362 | 0.0010 | 0.7022 | 0.0236 | 0.2233 | 123 |
0.0002 | 0.0362 | 0.0010 | 0.7041 | 0.0236 | 0.2226 | 124 |
0.0002 | 0.0362 | 0.0011 | 0.7065 | 0.0236 | 0.2228 | 125 |
0.0002 | 0.0362 | 0.0011 | 0.7081 | 0.0236 | 0.2227 | 126 |
0.0002 | 0.0362 | 0.0011 | 0.7101 | 0.0236 | 0.2224 | 127 |
0.0002 | 0.0362 | 0.0011 | 0.7130 | 0.0236 | 0.2224 | 128 |
0.0002 | 0.0362 | 0.0011 | 0.7157 | 0.0236 | 0.2229 | 129 |
0.0002 | 0.0362 | 0.0011 | 0.7183 | 0.0236 | 0.2225 | 130 |
0.0001 | 0.0362 | 0.0011 | 0.7212 | 0.0236 | 0.2230 | 131 |
0.0001 | 0.0362 | 0.0012 | 0.7250 | 0.0236 | 0.2230 | 132 |
0.0001 | 0.0362 | 0.0012 | 0.7268 | 0.0236 | 0.2229 | 133 |
0.0001 | 0.0362 | 0.0011 | 0.7303 | 0.0236 | 0.2229 | 134 |
Framework versions
- Transformers 4.33.0.dev0
- TensorFlow 2.13.0
- Tokenizers 0.13.3
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for bigmorning/whisper_syl_cv12_pad_lob100_low__0135
Base model
openai/whisper-tiny