Usage
For usage instructions, refer to: https://github.com/Muennighoff/sgpt#asymmetric-semantic-search-be
The model was trained with the command
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 accelerate launch examples/training/ms_marco/train_bi-encoder_mnrl.py --model_name bigscience/bloom-7b1 --train_batch_size 32 --eval_batch_size 16 --freezenonbias --specb --lr 4e-4 --wandb --wandbwatchlog gradients --pooling weightedmean --gradcache --chunksize 8
Evaluation Results
{"ndcgs": {"sgpt-bloom-7b1-msmarco": {"scifact": {"NDCG@10": 0.71824}, "nfcorpus": {"NDCG@10": 0.35748}, "arguana": {"NDCG@10": 0.47281}, "scidocs": {"NDCG@10": 0.18435}, "fiqa": {"NDCG@10": 0.35736}, "cqadupstack": {"NDCG@10": 0.3708525}, "quora": {"NDCG@10": 0.74655}, "trec-covid": {"NDCG@10": 0.82731}, "webis-touche2020": {"NDCG@10": 0.2365}}}
See the evaluation folder or MTEB for more results.
Training
The model was trained with the parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 15600 with parameters:
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
The model uses BitFit, weighted-mean pooling & GradCache, for details see: https://arxiv.org/abs/2202.08904
Loss:
sentence_transformers.losses.MultipleNegativesRankingLoss.MNRLGradCache
Parameters of the fit()-Method:
{
"epochs": 10,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 0.0004
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 1000,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: BloomModel
(1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False})
)
Citing & Authors
@article{muennighoff2022sgpt,
title={SGPT: GPT Sentence Embeddings for Semantic Search},
author={Muennighoff, Niklas},
journal={arXiv preprint arXiv:2202.08904},
year={2022}
}
- Downloads last month
- 501
Spaces using bigscience/sgpt-bloom-7b1-msmarco 6
Evaluation results
- accuracy on MTEB AmazonCounterfactualClassification (en)test set self-reported68.060
- ap on MTEB AmazonCounterfactualClassification (en)test set self-reported31.640
- f1 on MTEB AmazonCounterfactualClassification (en)test set self-reported62.500
- accuracy on MTEB AmazonCounterfactualClassification (de)test set self-reported61.349
- ap on MTEB AmazonCounterfactualClassification (de)test set self-reported75.188
- f1 on MTEB AmazonCounterfactualClassification (de)test set self-reported59.048
- accuracy on MTEB AmazonCounterfactualClassification (en-ext)test set self-reported67.781
- ap on MTEB AmazonCounterfactualClassification (en-ext)test set self-reported19.219
- f1 on MTEB AmazonCounterfactualClassification (en-ext)test set self-reported56.245
- accuracy on MTEB AmazonCounterfactualClassification (ja)test set self-reported58.233