BigStorm - ExLLamaV2 (Exl2) Quantization
- 6.0 bpw target
- 6 head bits
Enjoy! Raise an issue if you'd like other BPW levels.
Base Model Card Follows:
See axolotl config
axolotl version: 0.4.1
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
chat_template: chatml
datasets:
- path: /workspace/datasets/dolphin201-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/SystemChat_filtered_sharegpt.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/SystemChat_multilingual_sharegpt.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-coder-translate-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-coder-codegen-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/m-a-p_Code-Feedback-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/m-a-p_CodeFeedback-Filtered-Instruction-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/not_samantha_norefusals.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/Orca-Math-resort-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/agent_instruct_react_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/toolbench_instruct_j1s1_3k_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/toolbench_negative_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/toolbench_react_10p_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/toolbench_tflan_cot_30p_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/openhermes200k_unfiltered.jsonl
type: sharegpt
conversation: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./llama-3-8b-2.9.3
sequence_len: 8192
sample_packing: false
pad_to_sequence_len: false
wandb_project: 2.9.3-llama-3-8b
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-5
train_on_inputs: false
group_by_length: false
bf16: true
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
logging_steps: 1
flash_attention: true
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
warmup_steps: 10
evals_per_epoch: 2
saves_per_epoch: 2
save_total_limit: 2
weight_decay: 0.1
special_tokens:
eos_token: "<|im_end|>"
pad_token: "<|end_of_text|>"
tokens:
- "<|im_start|>"
- "<|im_end|>"
llama-3-8b-2.9.3
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset.
It achieves the following results on the evaluation set:
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
1.005 |
0.0001 |
1 |
0.9649 |
0.6468 |
0.5000 |
5058 |
0.6022 |
0.6648 |
1.0000 |
10116 |
0.5731 |
0.4983 |
1.5000 |
15174 |
0.5668 |
0.394 |
2.0000 |
20232 |
0.5478 |
0.3182 |
2.4999 |
25290 |
0.5781 |
0.2916 |
2.9999 |
30348 |
0.5771 |
Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1