Edit model card

Image-caption-generator

This model is trained on Flickr8k dataset to generate captions given an image.

It achieves the following results on the evaluation set:

  • eval_loss: 0.2536
  • eval_runtime: 25.369
  • eval_samples_per_second: 63.818
  • eval_steps_per_second: 8.002
  • epoch: 4.0
  • step: 3236

Running the model using transformers library

  1. Load the pre-trained model from the model hub

    from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
    import torch
    from PIL import Image
    
    model_name = "bipin/image-caption-generator"
    
    # load model
    model = VisionEncoderDecoderModel.from_pretrained(model_name)
    feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
    tokenizer = AutoTokenizer.from_pretrained("gpt2")
    
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    
  2. Load the image for which the caption is to be generated(note: replace the value of img_name with image of your choice)

    ### replace the value with your image
    img_name = "flickr_data.jpg"
    img = Image.open(img_name)
    if img.mode != 'RGB':
        img = img.convert(mode="RGB")
    
  3. Pre-process the image

    pixel_values = feature_extractor(images=[img], return_tensors="pt").pixel_values
    pixel_values = pixel_values.to(device)
    
  4. Generate the caption

     max_length = 128
     num_beams = 4
    
     # get model prediction
     output_ids = model.generate(pixel_values, num_beams=num_beams, max_length=max_length)
    
     # decode the generated prediction
     preds = tokenizer.decode(output_ids[0], skip_special_tokens=True)
     print(preds)
    

Training procedure

The procedure used to train this model can be found here.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.9.1
  • Datasets 1.18.4
  • Tokenizers 0.11.6
Downloads last month
282
Safetensors
Model size
264M params
Tensor type
F32
Β·
U8
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using bipin/image-caption-generator 7