experiments
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.4332
Model description
MODEL_NAME = "/content/blackhole33/llama-5000-sample-peft"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME, quantization_config=quantization_config, device_map="auto"
)
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.3475 | 0.2 | 100 | 1.5142 |
1.4979 | 0.4 | 200 | 1.4703 |
1.4307 | 0.6 | 300 | 1.4510 |
1.3795 | 0.8 | 400 | 1.4434 |
1.3847 | 1.0 | 500 | 1.4332 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.1
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for blackhole33/experiments
Base model
meta-llama/Meta-Llama-3-8B-Instruct