Uploaded model
Usage model.
import gradio as gr
from unsloth import FastLanguageModel
# Load your pre-trained model
max_seq_length = 2048
dtype = None
load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="blackhole33/llama-3-8b-bnb-4bit",
max_seq_length=max_seq_length,
dtype=dtype,
load_in_4bit=load_in_4bit,
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
# Alpaca prompt template
alpaca_prompt = """Quyida vazifani tavsiflovchi ko'rsatma mavjud bo'lib, u qo'shimcha kontekstni ta'minlaydigan kiritish bilan bog'langan. So'rovni to'g'ri to'ldiradigan javob yozing.
### Instruction:
{}
### Response:
{}"""
# Function to generate response
def generate_response(instruction):
inputs = tokenizer(
[
alpaca_prompt.format(
instruction, # instruction
"" # output - leave this blank for generation!
)
],
return_tensors="pt",
).to("cuda")
outputs = model.generate(**inputs, max_new_tokens=250, use_cache=True)
res = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return res[0]
# Gradio interface
interface = gr.Interface(
fn=generate_response,
inputs=[
gr.Textbox(lines=2, placeholder="Question"),
],
outputs="text",
title="Uzbek Language Model Interface",
description="Enter an instruction and context to get a response from the model.",
)
# Launch the interface
interface.launch(share=True)
- Developed by: blackhole33
- License: apache-2.0
- Finetuned from model : llama-3-8b-bnb-4bit