RuBERT for Sentiment Analysis of Medical Reviews
This is a DeepPavlov/rubert-base-cased-conversational model trained on corpus of medical reviews.
Labels
0: NEUTRAL
1: POSITIVE
2: NEGATIVE
How to use
import torch
from transformers import AutoModelForSequenceClassification
from transformers import BertTokenizerFast
tokenizer = BertTokenizerFast.from_pretrained('blanchefort/rubert-base-cased-sentiment-med')
model = AutoModelForSequenceClassification.from_pretrained('blanchefort/rubert-base-cased-sentiment-med', return_dict=True)
@torch.no_grad()
def predict(text):
inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**inputs)
predicted = torch.nn.functional.softmax(outputs.logits, dim=1)
predicted = torch.argmax(predicted, dim=1).numpy()
return predicted
Dataset used for model training
Датасет содержит пользовательские отзывы о медицинских учреждениях. Датасет собран в мае 2019 года с сайта prodoctorov.ru
- Downloads last month
- 141
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.