|
--- |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:67190 |
|
- loss:AdaptiveLayerLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: microsoft/deberta-v3-small |
|
datasets: |
|
- stanfordnlp/snli |
|
metrics: |
|
- cosine_accuracy |
|
- cosine_accuracy_threshold |
|
- cosine_f1 |
|
- cosine_f1_threshold |
|
- cosine_precision |
|
- cosine_recall |
|
- cosine_ap |
|
- dot_accuracy |
|
- dot_accuracy_threshold |
|
- dot_f1 |
|
- dot_f1_threshold |
|
- dot_precision |
|
- dot_recall |
|
- dot_ap |
|
- manhattan_accuracy |
|
- manhattan_accuracy_threshold |
|
- manhattan_f1 |
|
- manhattan_f1_threshold |
|
- manhattan_precision |
|
- manhattan_recall |
|
- manhattan_ap |
|
- euclidean_accuracy |
|
- euclidean_accuracy_threshold |
|
- euclidean_f1 |
|
- euclidean_f1_threshold |
|
- euclidean_precision |
|
- euclidean_recall |
|
- euclidean_ap |
|
- max_accuracy |
|
- max_accuracy_threshold |
|
- max_f1 |
|
- max_f1_threshold |
|
- max_precision |
|
- max_recall |
|
- max_ap |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: A worker peers out from atop a building under construction. |
|
sentences: |
|
- The man pleads for mercy. |
|
- People and a baby crossing the street. |
|
- A person is atop of a building. |
|
- source_sentence: An aisle at Best Buy with an employee standing at the computer |
|
and a Geek Squad sign in the background. |
|
sentences: |
|
- the man is watching the stars |
|
- The employee is wearing a blue shirt. |
|
- A person balancing. |
|
- source_sentence: A man with a long white beard is examining a camera and another |
|
man with a black shirt is in the background. |
|
sentences: |
|
- a man is with another man |
|
- Children in uniforms climb a tower. |
|
- There are five children. |
|
- source_sentence: A black dog with a blue collar is jumping into the water. |
|
sentences: |
|
- The dog is playing tug of war with a stick. |
|
- There is a woman painting. |
|
- A black dog wearing a blue collar is chasing something into the water. |
|
- source_sentence: A wet child stands in chest deep ocean water. |
|
sentences: |
|
- A woman paints a portrait of her best friend. |
|
- A person in red is cutting the grass on a riding mower |
|
- The child s playing on the beach. |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on microsoft/deberta-v3-small |
|
results: |
|
- task: |
|
type: binary-classification |
|
name: Binary Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.6583157259281618 |
|
name: Cosine Accuracy |
|
- type: cosine_accuracy_threshold |
|
value: 0.6766541004180908 |
|
name: Cosine Accuracy Threshold |
|
- type: cosine_f1 |
|
value: 0.7049362860324137 |
|
name: Cosine F1 |
|
- type: cosine_f1_threshold |
|
value: 0.6017583012580872 |
|
name: Cosine F1 Threshold |
|
- type: cosine_precision |
|
value: 0.6115046147241897 |
|
name: Cosine Precision |
|
- type: cosine_recall |
|
value: 0.8320677570093458 |
|
name: Cosine Recall |
|
- type: cosine_ap |
|
value: 0.6995030811464378 |
|
name: Cosine Ap |
|
- type: dot_accuracy |
|
value: 0.6272260790824027 |
|
name: Dot Accuracy |
|
- type: dot_accuracy_threshold |
|
value: 163.25054931640625 |
|
name: Dot Accuracy Threshold |
|
- type: dot_f1 |
|
value: 0.6976381461675579 |
|
name: Dot F1 |
|
- type: dot_f1_threshold |
|
value: 119.20779418945312 |
|
name: Dot F1 Threshold |
|
- type: dot_precision |
|
value: 0.5639409221902018 |
|
name: Dot Precision |
|
- type: dot_recall |
|
value: 0.914427570093458 |
|
name: Dot Recall |
|
- type: dot_ap |
|
value: 0.643747511442345 |
|
name: Dot Ap |
|
- type: manhattan_accuracy |
|
value: 0.6571083610021129 |
|
name: Manhattan Accuracy |
|
- type: manhattan_accuracy_threshold |
|
value: 243.75453186035156 |
|
name: Manhattan Accuracy Threshold |
|
- type: manhattan_f1 |
|
value: 0.7055783910745744 |
|
name: Manhattan F1 |
|
- type: manhattan_f1_threshold |
|
value: 295.95947265625 |
|
name: Manhattan F1 Threshold |
|
- type: manhattan_precision |
|
value: 0.5900608917697898 |
|
name: Manhattan Precision |
|
- type: manhattan_recall |
|
value: 0.8773364485981309 |
|
name: Manhattan Recall |
|
- type: manhattan_ap |
|
value: 0.7072033306346501 |
|
name: Manhattan Ap |
|
- type: euclidean_accuracy |
|
value: 0.6590703290069424 |
|
name: Euclidean Accuracy |
|
- type: euclidean_accuracy_threshold |
|
value: 12.141830444335938 |
|
name: Euclidean Accuracy Threshold |
|
- type: euclidean_f1 |
|
value: 0.7036813518406759 |
|
name: Euclidean F1 |
|
- type: euclidean_f1_threshold |
|
value: 14.197540283203125 |
|
name: Euclidean F1 Threshold |
|
- type: euclidean_precision |
|
value: 0.5996708496194199 |
|
name: Euclidean Precision |
|
- type: euclidean_recall |
|
value: 0.8513434579439252 |
|
name: Euclidean Recall |
|
- type: euclidean_ap |
|
value: 0.7035256676322055 |
|
name: Euclidean Ap |
|
- type: max_accuracy |
|
value: 0.6590703290069424 |
|
name: Max Accuracy |
|
- type: max_accuracy_threshold |
|
value: 243.75453186035156 |
|
name: Max Accuracy Threshold |
|
- type: max_f1 |
|
value: 0.7055783910745744 |
|
name: Max F1 |
|
- type: max_f1_threshold |
|
value: 295.95947265625 |
|
name: Max F1 Threshold |
|
- type: max_precision |
|
value: 0.6115046147241897 |
|
name: Max Precision |
|
- type: max_recall |
|
value: 0.914427570093458 |
|
name: Max Recall |
|
- type: max_ap |
|
value: 0.7072033306346501 |
|
name: Max Ap |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.732169941341086 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7344587206087978 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7537099624360986 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7550555196955944 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7468210439584286 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.74849026008206 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6142835401925993 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6100201108417316 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7537099624360986 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.7550555196955944 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on microsoft/deberta-v3-small |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) |
|
- **Language:** en |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("bobox/DeBERTaV3-small-ST-AdaptiveLayers-ep2") |
|
# Run inference |
|
sentences = [ |
|
'A wet child stands in chest deep ocean water.', |
|
'The child s playing on the beach.', |
|
'A woman paints a portrait of her best friend.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Binary Classification |
|
|
|
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) |
|
|
|
| Metric | Value | |
|
|:-----------------------------|:-----------| |
|
| cosine_accuracy | 0.6583 | |
|
| cosine_accuracy_threshold | 0.6767 | |
|
| cosine_f1 | 0.7049 | |
|
| cosine_f1_threshold | 0.6018 | |
|
| cosine_precision | 0.6115 | |
|
| cosine_recall | 0.8321 | |
|
| cosine_ap | 0.6995 | |
|
| dot_accuracy | 0.6272 | |
|
| dot_accuracy_threshold | 163.2505 | |
|
| dot_f1 | 0.6976 | |
|
| dot_f1_threshold | 119.2078 | |
|
| dot_precision | 0.5639 | |
|
| dot_recall | 0.9144 | |
|
| dot_ap | 0.6437 | |
|
| manhattan_accuracy | 0.6571 | |
|
| manhattan_accuracy_threshold | 243.7545 | |
|
| manhattan_f1 | 0.7056 | |
|
| manhattan_f1_threshold | 295.9595 | |
|
| manhattan_precision | 0.5901 | |
|
| manhattan_recall | 0.8773 | |
|
| manhattan_ap | 0.7072 | |
|
| euclidean_accuracy | 0.6591 | |
|
| euclidean_accuracy_threshold | 12.1418 | |
|
| euclidean_f1 | 0.7037 | |
|
| euclidean_f1_threshold | 14.1975 | |
|
| euclidean_precision | 0.5997 | |
|
| euclidean_recall | 0.8513 | |
|
| euclidean_ap | 0.7035 | |
|
| max_accuracy | 0.6591 | |
|
| max_accuracy_threshold | 243.7545 | |
|
| max_f1 | 0.7056 | |
|
| max_f1_threshold | 295.9595 | |
|
| max_precision | 0.6115 | |
|
| max_recall | 0.9144 | |
|
| **max_ap** | **0.7072** | |
|
|
|
#### Semantic Similarity |
|
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7322 | |
|
| **spearman_cosine** | **0.7345** | |
|
| pearson_manhattan | 0.7537 | |
|
| spearman_manhattan | 0.7551 | |
|
| pearson_euclidean | 0.7468 | |
|
| spearman_euclidean | 0.7485 | |
|
| pearson_dot | 0.6143 | |
|
| spearman_dot | 0.61 | |
|
| pearson_max | 0.7537 | |
|
| spearman_max | 0.7551 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### stanfordnlp/snli |
|
|
|
* Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b) |
|
* Size: 67,190 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 21.19 tokens</li><li>max: 133 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.77 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>0: 100.00%</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | label | |
|
|:---------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:---------------| |
|
| <code>Without a placebo group, we still won't know if any of the treatments are better than nothing and therefore worth giving.</code> | <code>It is necessary to use a controlled method to ensure the treatments are worthwhile.</code> | <code>0</code> | |
|
| <code>It was conducted in silence.</code> | <code>It was done silently.</code> | <code>0</code> | |
|
| <code>oh Lewisville any decent food in your cafeteria up there</code> | <code>Is there any decent food in your cafeteria up there in Lewisville?</code> | <code>0</code> | |
|
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"n_layers_per_step": 1, |
|
"last_layer_weight": 1, |
|
"prior_layers_weight": 1, |
|
"kl_div_weight": 1, |
|
"kl_temperature": 1 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### stanfordnlp/snli |
|
|
|
* Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b) |
|
* Size: 1,500 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 14.77 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.74 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:--------------------------------------------------|:------------------------------------------------------|:------------------| |
|
| <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> | |
|
| <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> | |
|
| <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> | |
|
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"n_layers_per_step": 1, |
|
"last_layer_weight": 1, |
|
"prior_layers_weight": 1, |
|
"kl_div_weight": 1, |
|
"kl_temperature": 1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 42 |
|
- `per_device_eval_batch_size`: 22 |
|
- `learning_rate`: 3e-06 |
|
- `weight_decay`: 1e-08 |
|
- `num_train_epochs`: 2 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.5 |
|
- `save_safetensors`: False |
|
- `fp16`: True |
|
- `hub_model_id`: bobox/DeBERTaV3-small-ST-AdaptiveLayers-ep2-tmp |
|
- `hub_strategy`: checkpoint |
|
- `hub_private_repo`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 42 |
|
- `per_device_eval_batch_size`: 22 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 3e-06 |
|
- `weight_decay`: 1e-08 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 2 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.5 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: False |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: bobox/DeBERTaV3-small-ST-AdaptiveLayers-ep2-tmp |
|
- `hub_strategy`: checkpoint |
|
- `hub_private_repo`: True |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | max_ap | spearman_cosine | |
|
|:-----:|:----:|:-------------:|:------:|:------:|:---------------:| |
|
| 0.1 | 160 | 4.6003 | 4.8299 | 0.6017 | - | |
|
| 0.2 | 320 | 4.0659 | 4.3436 | 0.6168 | - | |
|
| 0.3 | 480 | 3.4886 | 4.0840 | 0.6339 | - | |
|
| 0.4 | 640 | 3.0592 | 3.6422 | 0.6611 | - | |
|
| 0.5 | 800 | 2.5728 | 3.1927 | 0.6773 | - | |
|
| 0.6 | 960 | 2.184 | 2.8322 | 0.6893 | - | |
|
| 0.7 | 1120 | 1.8744 | 2.4892 | 0.6954 | - | |
|
| 0.8 | 1280 | 1.757 | 2.4453 | 0.7002 | - | |
|
| 0.9 | 1440 | 1.5872 | 2.2565 | 0.7010 | - | |
|
| 1.0 | 1600 | 1.446 | 2.1391 | 0.7046 | - | |
|
| 1.1 | 1760 | 1.3892 | 2.1236 | 0.7058 | - | |
|
| 1.2 | 1920 | 1.2567 | 1.9738 | 0.7053 | - | |
|
| 1.3 | 2080 | 1.2233 | 1.8925 | 0.7063 | - | |
|
| 1.4 | 2240 | 1.1954 | 1.8392 | 0.7075 | - | |
|
| 1.5 | 2400 | 1.1395 | 1.9081 | 0.7065 | - | |
|
| 1.6 | 2560 | 1.1211 | 1.8080 | 0.7074 | - | |
|
| 1.7 | 2720 | 1.0825 | 1.8408 | 0.7073 | - | |
|
| 1.8 | 2880 | 1.1358 | 1.7363 | 0.7073 | - | |
|
| 1.9 | 3040 | 1.0628 | 1.8936 | 0.7072 | - | |
|
| 2.0 | 3200 | 1.1412 | 1.7846 | 0.7072 | - | |
|
| None | 0 | - | 3.0121 | 0.7072 | 0.7345 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.13 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.1.2 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.19.2 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### AdaptiveLayerLoss |
|
```bibtex |
|
@misc{li20242d, |
|
title={2D Matryoshka Sentence Embeddings}, |
|
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li}, |
|
year={2024}, |
|
eprint={2402.14776}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |