|
|
|
|
|
--- |
|
license_name: bria-2.3 |
|
license: other |
|
license_link: https://bria.ai/bria-huggingface-model-license-agreement/ |
|
library_name: diffusers |
|
inference: false |
|
tags: |
|
- text-to-image |
|
- legal liability |
|
- commercial use |
|
extra_gated_description: Model weights from BRIA AI can be obtained with the purchase of a commercial license. Fill in the form below and we reach out to you. |
|
extra_gated_heading: "Fill in this form to request a commercial license for the model" |
|
extra_gated_fields: |
|
Name: text |
|
Company/Org name: text |
|
Org Type (Early/Growth Startup, Enterprise, Academy): text |
|
Role: text |
|
Country: text |
|
Email: text |
|
By submitting this form, I agree to BRIA’s Privacy policy and Terms & conditions, see links below: checkbox |
|
--- |
|
|
|
|
|
|
|
# BRIA 2.3 ControlNet GenFill BETA - Model Card |
|
|
|
|
|
Trained exclusively on the largest multi-source commercial-grade licensed dataset, BRIA 2.3 ControlNet GenFill guarantees best quality while safe for commercial use. The model provides full legal liability coverage for copyright and privacy infringement and harmful content mitigation, as our dataset does not represent copyrighted materials, such as fictional characters, logos or trademarks, public figures, harmful content or privacy infringing content. |
|
|
|
|
|
BRIA 2.3 ControlNet GenFill is a model designed to fill masked regions in images based on user-provided textual prompts, specialised in the tasks object replacement, addition, and modification within an image. |
|
|
|
|
|
|
|
|
|
# What's New |
|
|
|
BRIA 2.3 ControlNet GenFill BETA should be applied on top of BRIA 2.3 Text-to-Image and therefore enable to use [Fast-LORA](https://huggingface.co/briaai/BRIA-2.3-FAST-LORA). This results in an extremely fast inpainting model, which requires only 6.3s using A10 GPU. |
|
|
|
|
|
|
|
|
|
|
|
### Model Description |
|
|
|
- **Developed by:** BRIA AI |
|
- **Model type:** Latent diffusion image-to-image model |
|
- **License:** [BRIA 2.3 ControlNet GenFill Licensing terms & conditions](https://bria.ai/bria-huggingface-model-license-agreement/). |
|
- Purchase is required to license and access the model. |
|
- **Model Description:** BRIA 2.3 ControlNet GenFill was trained exclusively on a professional-grade, licensed dataset. It is designed for commercial use and includes full legal liability coverage. |
|
- **Resources for more information:** [BRIA AI](https://bria.ai/) |
|
|
|
|
|
|
|
|
|
### Get Access to the source code and pre-trained model |
|
Interested in BRIA 2.3 ControlNet GenFill? Our Model is available for purchase. |
|
|
|
**Purchasing access to BRIA 2.3 ControlNet GenFill ensures royalty management and full liability for commercial use.** |
|
|
|
|
|
*Are you a startup or a student?* We encourage you to apply for our specialized Academia and [Startup Programs](https://pages.bria.ai/the-visual-generative-ai-platform-for-builders-startups-plan?_gl=1*cqrl81*_ga*MTIxMDI2NzI5OC4xNjk5NTQ3MDAz*_ga_WRN60H46X4*MTcwOTM5OTMzNC4yNzguMC4xNzA5Mzk5MzM0LjYwLjAuMA..) to gain access. These programs are designed to support emerging businesses and academic pursuits with our cutting-edge technology. |
|
|
|
|
|
**Contact us today to unlock the potential of BRIA 2.3 ControlNet GenFill!** |
|
|
|
By submitting the form above, you agree to BRIA’s [Privacy policy](https://bria.ai/privacy-policy/) and [Terms & Conditions](https://bria.ai/terms-and-conditions/). |
|
|
|
|
|
### How To Use |
|
|
|
```python |
|
from diffusers import ( |
|
AutoencoderKL, |
|
LCMScheduler, |
|
) |
|
from pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline |
|
from controlnet import ControlNetModel, ControlNetConditioningEmbedding |
|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
import requests |
|
import PIL |
|
from io import BytesIO |
|
from torchvision import transforms |
|
import pandas as pd |
|
import os |
|
|
|
|
|
def resize_image_to_retain_ratio(image): |
|
pixel_number = 1024*1024 |
|
granularity_val = 8 |
|
ratio = image.size[0] / image.size[1] |
|
width = int((pixel_number * ratio) ** 0.5) |
|
width = width - (width % granularity_val) |
|
height = int(pixel_number / width) |
|
height = height - (height % granularity_val) |
|
|
|
image = image.resize((width, height)) |
|
return image |
|
|
|
|
|
def download_image(url): |
|
response = requests.get(url) |
|
return PIL.Image.open(BytesIO(response.content)).convert("RGB") |
|
|
|
|
|
def get_masked_image(image, image_mask, width, height): |
|
image_mask = image_mask # inpaint area is white |
|
image_mask = image_mask.resize((width, height)) # object to remove is white (1) |
|
image_mask_pil = image_mask |
|
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0 |
|
image_mask = np.array(image_mask_pil.convert("L")).astype(np.float32) / 255.0 |
|
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size" |
|
masked_image_to_present = image.copy() |
|
masked_image_to_present[image_mask > 0.5] = (0.5,0.5,0.5) # set as masked pixel |
|
image[image_mask > 0.5] = 0.5 # set as masked pixel - s.t. will be grey |
|
image = Image.fromarray((image * 255.0).astype(np.uint8)) |
|
masked_image_to_present = Image.fromarray((masked_image_to_present * 255.0).astype(np.uint8)) |
|
return image, image_mask_pil, masked_image_to_present |
|
|
|
|
|
image_transforms = transforms.Compose( |
|
[ |
|
transforms.ToTensor(), |
|
] |
|
) |
|
|
|
default_negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers" |
|
|
|
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" |
|
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" |
|
|
|
init_image = download_image(img_url).resize((1024, 1024)) |
|
mask_image = download_image(mask_url).resize((1024, 1024)) |
|
|
|
|
|
init_image = resize_image_to_retain_ratio(init_image) |
|
width, height = init_image.size |
|
|
|
mask_image = mask_image.convert("L").resize(init_image.size) |
|
|
|
width, height = init_image.size |
|
|
|
# Load, init model |
|
controlnet = ControlNetModel().from_pretrained("briaai/BRIA-2.3-ControlNet-GenFill", torch_dtype=torch.float16) |
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) |
|
pipe = StableDiffusionXLControlNetPipeline.from_pretrained("briaai/BRIA-2.3", controlnet=controlnet.to(dtype=torch.float16), torch_dtype=torch.float16, vae=vae) #force_zeros_for_empty_prompt=False, # vae=vae) |
|
|
|
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) |
|
pipe.load_lora_weights("briaai/BRIA-2.3-FAST-LORA") |
|
pipe.fuse_lora() |
|
pipe = pipe.to(device="cuda") |
|
|
|
# pipe.enable_xformers_memory_efficient_attention() |
|
|
|
generator = torch.Generator(device="cuda").manual_seed(123456) |
|
|
|
vae = pipe.vae |
|
|
|
|
|
masked_image, image_mask, masked_image_to_present = get_masked_image(init_image, mask_image, width, height) |
|
|
|
masked_image_tensor = image_transforms(masked_image) |
|
masked_image_tensor = (masked_image_tensor - 0.5) / 0.5 |
|
|
|
|
|
masked_image_tensor = masked_image_tensor.unsqueeze(0).to(device="cuda") |
|
control_latents = vae.encode( |
|
masked_image_tensor[:, :3, :, :].to(vae.dtype) |
|
).latent_dist.sample() |
|
control_latents = control_latents * vae.config.scaling_factor |
|
|
|
|
|
image_mask = np.array(image_mask)[:,:] |
|
mask_tensor = torch.tensor(image_mask, dtype=torch.float32)[None, ...] |
|
# binarize the mask |
|
mask_tensor = torch.where(mask_tensor > 128.0, 255.0, 0) |
|
|
|
mask_tensor = mask_tensor / 255.0 |
|
|
|
mask_tensor = mask_tensor.to(device="cuda") |
|
mask_resized = torch.nn.functional.interpolate(mask_tensor[None, ...], size=(control_latents.shape[2], control_latents.shape[3]), mode='nearest') |
|
|
|
masked_image = torch.cat([control_latents, mask_resized], dim=1) |
|
|
|
prompt = "" |
|
|
|
gen_img = pipe(negative_prompt=default_negative_prompt, prompt=prompt, |
|
controlnet_conditioning_scale=1.0, |
|
num_inference_steps=12, |
|
height=height, width=width, |
|
image = masked_image, # control image |
|
init_image = init_image, |
|
mask_image = mask_tensor, |
|
guidance_scale = 1.2, |
|
generator=generator).images[0] |
|
|
|
``` |
|
|
|
|