FuseQwQen-7B / README.md
bunnycore's picture
Adding Evaluation Results
ed3ec73 verified
|
raw
history blame
4.65 kB
---
library_name: transformers
tags:
- mergekit
- merge
base_model:
- FuseAI/FuseChat-Qwen-2.5-7B-Instruct
- fblgit/cybertron-v4-qw7B-UNAMGS
- bunnycore/Qwen-2.1-7b-Persona-lora_model
- prithivMLmods/QwQ-LCoT-7B-Instruct
- fblgit/cybertron-v4-qw7B-UNAMGS
model-index:
- name: FuseQwQen-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 72.75
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/FuseQwQen-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 35.91
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/FuseQwQen-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 12.01
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/FuseQwQen-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 5.93
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/FuseQwQen-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 11.98
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/FuseQwQen-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 37.85
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/FuseQwQen-7B
name: Open LLM Leaderboard
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [linear](https://arxiv.org/abs/2203.05482) merge method.
### Models Merged
The following models were included in the merge:
* [FuseAI/FuseChat-Qwen-2.5-7B-Instruct](https://huggingface.co/FuseAI/FuseChat-Qwen-2.5-7B-Instruct)
* [fblgit/cybertron-v4-qw7B-UNAMGS](https://huggingface.co/fblgit/cybertron-v4-qw7B-UNAMGS) + [bunnycore/Qwen-2.1-7b-Persona-lora_model](https://huggingface.co/bunnycore/Qwen-2.1-7b-Persona-lora_model)
* [prithivMLmods/QwQ-LCoT-7B-Instruct](https://huggingface.co/prithivMLmods/QwQ-LCoT-7B-Instruct)
* [fblgit/cybertron-v4-qw7B-UNAMGS](https://huggingface.co/fblgit/cybertron-v4-qw7B-UNAMGS)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: FuseAI/FuseChat-Qwen-2.5-7B-Instruct
parameters:
weight: 0.5
- model: prithivMLmods/QwQ-LCoT-7B-Instruct
parameters:
weight: 1.0
- model: fblgit/cybertron-v4-qw7B-UNAMGS
parameters:
weight: 0.3
- model: fblgit/cybertron-v4-qw7B-UNAMGS+bunnycore/Qwen-2.1-7b-Persona-lora_model
parameters:
weight: 0.6
merge_method: linear
normalize: false
int8_mask: true
dtype: bfloat16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/bunnycore__FuseQwQen-7B-details)
| Metric |Value|
|-------------------|----:|
|Avg. |29.40|
|IFEval (0-Shot) |72.75|
|BBH (3-Shot) |35.91|
|MATH Lvl 5 (4-Shot)|12.01|
|GPQA (0-shot) | 5.93|
|MuSR (0-shot) |11.98|
|MMLU-PRO (5-shot) |37.85|