Edit model card

Baseline Model trained on heart1ohr2x9e to apply classification on target

Metrics of the best model:

accuracy 0.885854

average_precision 0.949471

roc_auc 0.050633

recall_macro 0.885324

f1_macro 0.885610

Name: LogisticRegression(class_weight='balanced', max_iter=1000), dtype: float64

See model plot below:

Pipeline(steps=[('easypreprocessor',EasyPreprocessor(types=          continuous  dirty_float  low_card_int  ...   date  free_string  useless

age False False False ... False False False sex False False False ... False False False cp False False False ... False False False trestbps True False False ... False False False chol True False False ... False False False fbs False False False ... False False False restecg False Fa...... False False False thalach True False False ... False False False exang False False False ... False False False oldpeak True False False ... False False False slope False False False ... False False False ca False False False ... False False False thal False False False ... False False False[13 rows x 7 columns])),('logisticregression',LogisticRegression(C=1, class_weight='balanced',max_iter=1000))])

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Disclaimer: This model is trained with dabl library as a baseline, for better results, use AutoTrain.

Logs of training including the models tried in the process can be found in logs.txt

Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.