Whisper Medium Tr - Can K V2

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2285
  • Wer: 15.4185

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 12000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.203 0.3448 1000 0.2255 19.4192
0.1602 0.6895 2000 0.2142 18.0448
0.0814 1.0343 3000 0.2087 17.5338
0.0761 1.3791 4000 0.2060 17.1558
0.0734 1.7238 5000 0.1998 16.5052
0.0335 2.0686 6000 0.2073 16.7283
0.0344 2.4134 7000 0.2066 15.9091
0.0338 2.7581 8000 0.2023 15.3709
0.0099 3.1029 9000 0.2211 15.6331
0.0097 3.4477 10000 0.2254 15.6008
0.0096 3.7924 11000 0.2254 15.3334
0.0022 4.1372 12000 0.2285 15.4185

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
15
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cankaracelebi/whisper-medium-tr-v4

Finetuned
(469)
this model

Dataset used to train cankaracelebi/whisper-medium-tr-v4

Evaluation results