cardiffnlp/xlm-roberta-base-sentiment-multilingual
This model is a fine-tuned version of xlm-roberta-base on the
cardiffnlp/tweet_sentiment_multilingual (all)
via tweetnlp
.
Training split is train
and parameters have been tuned on the validation split validation
.
Following metrics are achieved on the test split test
(link).
- F1 (micro): 0.665948275862069
- F1 (macro): 0.6628627126803655
- Accuracy: 0.665948275862069
Usage
Install tweetnlp via pip.
pip install tweetnlp
Load the model in python.
import tweetnlp
model = tweetnlp.Classifier("cardiffnlp/xlm-roberta-base-sentiment-multilingual", max_length=128)
model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}')
Reference
@inproceedings{dimosthenis-etal-2022-twitter,
title = "{T}witter {T}opic {C}lassification",
author = "Antypas, Dimosthenis and
Ushio, Asahi and
Camacho-Collados, Jose and
Neves, Leonardo and
Silva, Vitor and
Barbieri, Francesco",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics"
}
- Downloads last month
- 108
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train cardiffnlp/xlm-roberta-base-sentiment-multilingual
Space using cardiffnlp/xlm-roberta-base-sentiment-multilingual 1
Evaluation results
- Micro F1 (cardiffnlp/tweet_sentiment_multilingual/all) on cardiffnlp/tweet_sentiment_multilingualtest set self-reported0.666
- Macro F1 (cardiffnlp/tweet_sentiment_multilingual/all) on cardiffnlp/tweet_sentiment_multilingualtest set self-reported0.663
- Accuracy (cardiffnlp/tweet_sentiment_multilingual/all) on cardiffnlp/tweet_sentiment_multilingualtest set self-reported0.666