|
--- |
|
library_name: transformers |
|
base_model: carlosleao/vit-Facial-Expression-Recognition |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: RAFDB-Facial-Expression-Recognition |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# RAFDB-Facial-Expression-Recognition |
|
|
|
This model is a fine-tuned version of [carlosleao/vit-Facial-Expression-Recognition](https://huggingface.co/carlosleao/vit-Facial-Expression-Recognition) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.5906 |
|
- Accuracy: 0.4159 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 256 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-------:|:----:|:---------------:|:--------:| |
|
| 1.7235 | 2.0833 | 100 | 1.6571 | 0.3875 | |
|
| 1.5738 | 4.1667 | 200 | 1.5756 | 0.3967 | |
|
| 1.4811 | 6.25 | 300 | 1.5389 | 0.4166 | |
|
| 1.3178 | 8.3333 | 400 | 1.5501 | 0.4003 | |
|
| 1.095 | 10.4167 | 500 | 1.5906 | 0.4159 | |
|
| 0.8081 | 12.5 | 600 | 1.7889 | 0.3641 | |
|
| 0.594 | 14.5833 | 700 | 1.9123 | 0.3833 | |
|
| 0.434 | 16.6667 | 800 | 2.1054 | 0.3638 | |
|
| 0.3201 | 18.75 | 900 | 2.3273 | 0.3455 | |
|
| 0.2472 | 20.8333 | 1000 | 2.3722 | 0.3510 | |
|
| 0.1879 | 22.9167 | 1100 | 2.4218 | 0.3611 | |
|
| 0.1255 | 25.0 | 1200 | 2.4329 | 0.3817 | |
|
| 0.0749 | 27.0833 | 1300 | 2.5189 | 0.3585 | |
|
| 0.0538 | 29.1667 | 1400 | 2.5638 | 0.3686 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.1 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |
|
|