carlosleao's picture
End of training
5f2e7e6 verified
|
raw
history blame
2.42 kB
---
library_name: transformers
base_model: carlosleao/vit-Facial-Expression-Recognition
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: RAFDB-Facial-Expression-Recognition
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# RAFDB-Facial-Expression-Recognition
This model is a fine-tuned version of [carlosleao/vit-Facial-Expression-Recognition](https://huggingface.co/carlosleao/vit-Facial-Expression-Recognition) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5906
- Accuracy: 0.4159
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 1.7235 | 2.0833 | 100 | 1.6571 | 0.3875 |
| 1.5738 | 4.1667 | 200 | 1.5756 | 0.3967 |
| 1.4811 | 6.25 | 300 | 1.5389 | 0.4166 |
| 1.3178 | 8.3333 | 400 | 1.5501 | 0.4003 |
| 1.095 | 10.4167 | 500 | 1.5906 | 0.4159 |
| 0.8081 | 12.5 | 600 | 1.7889 | 0.3641 |
| 0.594 | 14.5833 | 700 | 1.9123 | 0.3833 |
| 0.434 | 16.6667 | 800 | 2.1054 | 0.3638 |
| 0.3201 | 18.75 | 900 | 2.3273 | 0.3455 |
| 0.2472 | 20.8333 | 1000 | 2.3722 | 0.3510 |
| 0.1879 | 22.9167 | 1100 | 2.4218 | 0.3611 |
| 0.1255 | 25.0 | 1200 | 2.4329 | 0.3817 |
| 0.0749 | 27.0833 | 1300 | 2.5189 | 0.3585 |
| 0.0538 | 29.1667 | 1400 | 2.5638 | 0.3686 |
### Framework versions
- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0