carlosleao's picture
facial-expression-recognition-ferplus
8582c5f verified
|
raw
history blame
2.41 kB
metadata
library_name: transformers
base_model: carlosleao/vit-Facial-Expression-Recognition
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: vit-Facial-Expression-Recognition
    results: []

vit-Facial-Expression-Recognition

This model is a fine-tuned version of carlosleao/vit-Facial-Expression-Recognition on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5831
  • Accuracy: 0.4234

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7711 2.0833 100 1.7038 0.3915
1.5964 4.1667 200 1.5836 0.3957
1.5002 6.25 300 1.5438 0.4113
1.3591 8.3333 400 1.5690 0.4016
1.1821 10.4167 500 1.5831 0.4234
0.9323 12.5 600 1.7256 0.3960
0.7237 14.5833 700 1.8623 0.3954
0.5376 16.6667 800 2.0238 0.3742
0.363 18.75 900 2.1839 0.3462
0.238 20.8333 1000 2.2616 0.3602
0.1686 22.9167 1100 2.3515 0.3758
0.0952 25.0 1200 2.4730 0.3836
0.0526 27.0833 1300 2.5531 0.3898
0.0399 29.1667 1400 2.5901 0.3778

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.2
  • Tokenizers 0.20.1