File size: 6,736 Bytes
6765ef4
244a134
 
6765ef4
 
 
244a134
 
6765ef4
 
 
 
 
244a134
6765ef4
 
 
 
 
 
 
 
 
 
b7ff3b8
 
 
 
 
 
 
 
 
6765ef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7ff3b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6765ef4
 
 
 
 
 
e511de2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
---
language:
- pl
license: mit
tags:
- generated_from_trainer
datasets:
- cartesinus/leyzer-fedcsis
metrics:
- precision
- recall
- f1
- accuracy
base_model: xlm-roberta-base
model-index:
- name: fedcsis-slot_baseline-xlm_r-pl
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fedcsis-slot_baseline-xlm_r-pl

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the
[leyzer-fedcsis](https://huggingface.co/cartesinus/leyzer-fedcsis) dataset.

Results on test set:
- Precision: 0.9621
- Recall: 0.9583
- F1: 0.9602
- Accuracy: 0.9857

It achieves the following results on the evaluation set:
- Loss: 0.1009
- Precision: 0.9579
- Recall: 0.9512
- F1: 0.9546
- Accuracy: 0.9860

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.1608        | 1.0   | 798  | 0.2575          | 0.8881    | 0.8916 | 0.8898 | 0.9532   |
| 0.1561        | 2.0   | 1596 | 0.1188          | 0.9459    | 0.9389 | 0.9424 | 0.9806   |
| 0.0979        | 3.0   | 2394 | 0.1060          | 0.9507    | 0.9486 | 0.9497 | 0.9838   |
| 0.0579        | 4.0   | 3192 | 0.0916          | 0.9573    | 0.9475 | 0.9524 | 0.9851   |
| 0.0507        | 5.0   | 3990 | 0.1109          | 0.9527    | 0.9506 | 0.9516 | 0.9839   |
| 0.0344        | 6.0   | 4788 | 0.0987          | 0.9575    | 0.9488 | 0.9531 | 0.9855   |
| 0.0266        | 7.0   | 5586 | 0.1010          | 0.9584    | 0.9501 | 0.9542 | 0.9854   |
| 0.0211        | 8.0   | 6384 | 0.1051          | 0.9575    | 0.9498 | 0.9536 | 0.9855   |
| 0.0168        | 9.0   | 7182 | 0.1009          | 0.9577    | 0.9516 | 0.9546 | 0.9861   |
| 0.016         | 10.0  | 7980 | 0.1009          | 0.9579    | 0.9512 | 0.9546 | 0.9860   |

### Per slot evaluation

| slot_name | precision | recall | f1 | tc_size |
|-----------|-----------|--------|----|---------|
| album | 0.2000 | 0.3333 | 0.2500 | 9 |
| all_lang | 1.0000 | 1.0000 | 1.0000 | 5 |
| artist | 0.9341 | 0.9444 | 0.9392 | 90 |
| av_alias | 0.6667 | 0.8000 | 0.7273 | 5 |
| caption | 0.9651 | 0.9432 | 0.9540 | 88 |
| category | 0.0000 | 0.0000 | 0.0000 | 1 |
| category_a | 1.0000 | 0.9167 | 0.9565 | 12 |
| category_b | 1.0000 | 1.0000 | 1.0000 | 25 |
| channel | 0.9492 | 0.9333 | 0.9412 | 60 |
| channel_id | 0.9701 | 0.9644 | 0.9673 | 337 |
| count | 1.0000 | 0.9167 | 0.9565 | 12 |
| date | 0.9764 | 0.9841 | 0.9802 | 126 |
| date_day | 1.0000 | 0.9500 | 0.9744 | 20 |
| date_month | 0.9677 | 1.0000 | 0.9836 | 30 |
| device_name | 0.9091 | 1.0000 | 0.9524 | 10 |
| email | 1.0000 | 0.9913 | 0.9956 | 115 |
| event_name | 0.8788 | 0.9355 | 0.9063 | 31 |
| file_name | 0.9778 | 0.9778 | 0.9778 | 45 |
| file_size | 1.0000 | 1.0000 | 1.0000 | 12 |
| filename | 0.9722 | 0.9589 | 0.9655 | 73 |
| filter | 1.0000 | 1.0000 | 1.0000 | 35 |
| from | 0.9811 | 0.9123 | 0.9455 | 57 |
| hashtag | 1.0000 | 1.0000 | 1.0000 | 28 |
| img_query | 0.9707 | 0.9678 | 0.9693 | 342 |
| label | 1.0000 | 1.0000 | 1.0000 | 5 |
| location | 0.9766 | 0.9728 | 0.9747 | 257 |
| mail | 1.0000 | 1.0000 | 1.0000 | 3 |
| message | 0.9250 | 0.9487 | 0.9367 | 117 |
| mime_type | 0.9375 | 1.0000 | 0.9677 | 15 |
| name | 0.9412 | 0.9796 | 0.9600 | 49 |
| pathname | 0.8889 | 0.8889 | 0.8889 | 18 |
| percent | 1.0000 | 1.0000 | 1.0000 | 3 |
| phone_number | 0.9774 | 0.9774 | 0.9774 | 177 |
| phone_type | 1.0000 | 1.0000 | 1.0000 | 21 |
| picture_url | 0.9846 | 0.9412 | 0.9624 | 68 |
| playlist | 0.9516 | 0.9672 | 0.9593 | 122 |
| portal | 0.9869 | 0.9869 | 0.9869 | 153 |
| priority | 0.7500 | 1.0000 | 0.8571 | 6 |
| purpose | 0.0000 | 0.0000 | 0.0000 | 5 |
| query | 0.9663 | 0.9690 | 0.9677 | 355 |
| rating | 0.9630 | 0.9286 | 0.9455 | 28 |
| review_count | 1.0000 | 1.0000 | 1.0000 | 20 |
| section | 0.9730 | 0.9730 | 0.9730 | 74 |
| seek_time | 1.0000 | 1.0000 | 1.0000 | 3 |
| sender | 1.0000 | 1.0000 | 1.0000 | 6 |
| sender_address | 1.0000 | 0.9444 | 0.9714 | 18 |
| song | 0.8824 | 0.8898 | 0.8861 | 118 |
| src_lang_de | 0.9880 | 0.9762 | 0.9820 | 84 |
| src_lang_en | 0.9455 | 0.9630 | 0.9541 | 54 |
| src_lang_es | 0.9853 | 0.9306 | 0.9571 | 72 |
| src_lang_fr | 0.9733 | 0.9733 | 0.9733 | 75 |
| src_lang_it | 0.9872 | 0.9506 | 0.9686 | 81 |
| src_lang_pl | 0.9818 | 1.0000 | 0.9908 | 54 |
| status | 0.8810 | 0.9487 | 0.9136 | 39 |
| subject | 0.9636 | 0.9725 | 0.9680 | 109 |
| text_de | 0.9762 | 0.9762 | 0.9762 | 84 |
| text_en | 0.9796 | 0.9697 | 0.9746 | 99 |
| text_es | 0.8734 | 0.9583 | 0.9139 | 72 |
| text_fr | 0.9733 | 0.9733 | 0.9733 | 75 |
| text_it | 0.9872 | 0.9506 | 0.9686 | 81 |
| text_multi | 0.0000 | 0.0000 | 0.0000 | 4 |
| text_pl | 0.9310 | 1.0000 | 0.9643 | 54 |
| time | 0.9063 | 0.8788 | 0.8923 | 33 |
| to | 0.9648 | 0.9648 | 0.9648 | 199 |
| topic | 0.0000 | 0.0000 | 0.0000 | 3 |
| translator | 0.9838 | 0.9838 | 0.9838 | 185 |
| trg_lang_de | 0.9474 | 0.9730 | 0.9600 | 37 |
| trg_lang_en | 1.0000 | 0.9565 | 0.9778 | 46 |
| trg_lang_es | 0.9792 | 0.9792 | 0.9792 | 48 |
| trg_lang_fr | 0.9808 | 1.0000 | 0.9903 | 51 |
| trg_lang_general | 0.9500 | 0.9500 | 0.9500 | 20 |
| trg_lang_it | 0.9825 | 0.9492 | 0.9655 | 59 |
| trg_lang_pl | 0.9302 | 0.9756 | 0.9524 | 41 |
| txt_query | 0.9375 | 0.9146 | 0.9259 | 82 |
| username | 0.9615 | 0.8929 | 0.9259 | 28 |
| value | 0.8750 | 0.8750 | 0.8750 | 8 |
| weight | 1.0000 | 1.0000 | 1.0000 | 3 |


### Framework versions

- Transformers 4.27.4
- Pytorch 1.13.1+cu116
- Datasets 2.11.0
- Tokenizers 0.13.2

## Citation

If you use this model, please cite the following:
```
@inproceedings{kubis2023caiccaic,
	author={Marek Kubis and Paweł Skórzewski and Marcin Sowański and Tomasz Ziętkiewicz},
	pages={1319–1324},
	title={Center for Artificial Intelligence Challenge on Conversational AI Correctness},
	booktitle={Proceedings of the 18th Conference on Computer Science and Intelligence Systems},
	year={2023},
	doi={10.15439/2023B6058},
	url={http://dx.doi.org/10.15439/2023B6058},
	volume={35},
	series={Annals of Computer Science and Information Systems}
}

```