slurp-slot_baseline-xlm_r-en
This model is a fine-tuned version of xlm-roberta-base on the SLURP dataset.
It achieves the following results on the test set:
- Loss: 0.3263
- Precision: 0.7954
- Recall: 0.8413
- F1: 0.8177
- Accuracy: 0.9268
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
1.1437 | 1.0 | 720 | 0.5236 | 0.6852 | 0.6623 | 0.6736 | 0.8860 |
0.5761 | 2.0 | 1440 | 0.3668 | 0.7348 | 0.7829 | 0.7581 | 0.9119 |
0.3087 | 3.0 | 2160 | 0.2996 | 0.7925 | 0.8280 | 0.8099 | 0.9270 |
0.2631 | 4.0 | 2880 | 0.2959 | 0.7872 | 0.8487 | 0.8168 | 0.9275 |
0.1847 | 5.0 | 3600 | 0.3121 | 0.7929 | 0.8373 | 0.8145 | 0.9290 |
0.1518 | 6.0 | 4320 | 0.3117 | 0.8080 | 0.8601 | 0.8332 | 0.9329 |
0.1232 | 7.0 | 5040 | 0.3153 | 0.7961 | 0.8490 | 0.8217 | 0.9267 |
0.0994 | 8.0 | 5760 | 0.3125 | 0.8105 | 0.8570 | 0.8331 | 0.9332 |
0.0968 | 9.0 | 6480 | 0.3242 | 0.8147 | 0.8637 | 0.8385 | 0.9329 |
0.0772 | 10.0 | 7200 | 0.3263 | 0.8145 | 0.8641 | 0.8386 | 0.9341 |
Test results per slot
slot | f1 | tc_size |
---|---|---|
alarm_type | 0.4 | 4 |
app_name | 0.42857142857142855 | 10 |
artist_name | 0.8122605363984675 | 123 |
audiobook_author | 0.0 | 9 |
audiobook_name | 0.6021505376344087 | 43 |
business_name | 0.8530259365994236 | 184 |
business_type | 0.6666666666666667 | 41 |
change_amount | 0.6666666666666666 | 9 |
coffee_type | 0.5333333333333333 | 6 |
color_type | 0.8135593220338982 | 28 |
cooking_type | 0.8333333333333333 | 14 |
currency_name | 0.8611111111111112 | 70 |
date | 0.9034267912772587 | 623 |
definition_word | 0.88 | 97 |
device_type | 0.8053691275167785 | 71 |
drink_type | 0.0 | 2 |
email_address | 0.9599999999999999 | 38 |
email_folder | 0.9523809523809523 | 10 |
event_name | 0.7643504531722054 | 321 |
food_type | 0.7482014388489208 | 121 |
game_name | 0.7789473684210527 | 44 |
general_frequency | 0.5862068965517242 | 21 |
house_place | 0.8840579710144928 | 68 |
ingredient | 0.0 | 13 |
joke_type | 0.9411764705882353 | 17 |
list_name | 0.7979274611398963 | 91 |
meal_type | 0.782608695652174 | 18 |
media_type | 0.8596491228070176 | 173 |
movie_name | 0.0 | 3 |
movie_type | 0.5 | 3 |
music_album | 0.0 | 2 |
music_descriptor | 0.25 | 8 |
music_genre | 0.7244094488188977 | 58 |
news_topic | 0.5675675675675675 | 64 |
order_type | 0.7941176470588235 | 29 |
person | 0.9128094725511302 | 438 |
personal_info | 0.6666666666666666 | 16 |
place_name | 0.8725790010193679 | 493 |
player_setting | 0.5405405405405405 | 42 |
playlist_name | 0.5 | 27 |
podcast_descriptor | 0.4888888888888888 | 28 |
podcast_name | 0.5245901639344263 | 31 |
radio_name | 0.6504065040650406 | 53 |
relation | 0.8478260869565218 | 87 |
song_name | 0.7058823529411765 | 54 |
time | 0.7914893617021276 | 236 |
time_zone | 0.7804878048780488 | 23 |
timeofday | 0.8396946564885496 | 60 |
transport_agency | 0.8571428571428571 | 18 |
transport_descriptor | 0.0 | 2 |
transport_name | 0.4 | 7 |
transport_type | 0.9481481481481482 | 68 |
weather_descriptor | 0.789272030651341 | 123 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
- Downloads last month
- 135
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.