cartesinus's picture
Librarian Bot: Add base_model information to model (#2)
645220d
|
raw
history blame
2.15 kB
metadata
language:
  - en
license: mit
tags:
  - generated_from_trainer
  - nlu
  - intent-classification
  - text-classification
datasets:
  - AmazonScience/massive
metrics:
  - accuracy
  - f1
base_model: xlm-roberta-base
model-index:
  - name: xlm-r-base-amazon-massive-intent-label_smoothing
    results:
      - task:
          type: intent-classification
          name: intent-classification
        dataset:
          name: MASSIVE
          type: AmazonScience/massive
          split: test
        metrics:
          - type: f1
            value: 0.8879
            name: F1

xlm-r-base-amazon-massive-intent-label_smoothing

This model is a fine-tuned version of xlm-roberta-base on the MASSIVE1.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5148
  • Accuracy: 0.8879
  • F1: 0.8879

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • label_smoothing_factor: 0.4

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
3.3945 1.0 720 2.7175 0.7900 0.7900
2.7629 2.0 1440 2.5660 0.8549 0.8549
2.5143 3.0 2160 2.5389 0.8711 0.8711
2.4678 4.0 2880 2.5172 0.8883 0.8883
2.4187 5.0 3600 2.5148 0.8879 0.8879

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.0
  • Tokenizers 0.13.2