metadata
license: cc-by-nc-sa-4.0
datasets:
- camel-ai/code
- ehartford/wizard_vicuna_70k_unfiltered
- anon8231489123/ShareGPT_Vicuna_unfiltered
- teknium1/GPTeacher/roleplay-instruct-v2-final
- teknium1/GPTeacher/codegen-isntruct
- timdettmers/openassistant-guanaco
- camel-ai/math
- project-baize/baize-chatbot/medical_chat_data
- project-baize/baize-chatbot/quora_chat_data
- project-baize/baize-chatbot/stackoverflow_chat_data
- camel-ai/biology
- camel-ai/chemistry
- camel-ai/ai_society
- jondurbin/airoboros-gpt4-1.2
- LongConversations
- camel-ai/physics
tags:
- Composer
- MosaicML
- llm-foundry
inference: false
MPT-7B-Chat-8k
License: CC-By-NC-SA-4.0 (non-commercial use only)
Model Date
July 18, 2023
Model License
CC-By-NC-SA-4.0 (non-commercial use only)
Documentation
- Blog post: MPT-7B-8k
- Codebase (mosaicml/llm-foundry repo)
- Questions: Feel free to contact us via the MosaicML Community Slack!
How to Use
You need auto-gptq installed to run the following: pip install auto-gptq
Example script:
from auto_gptq import AutoGPTQForCausalLM
from transformers import AutoTokenizer, TextGenerationPipeline, TextStreamer
quantized_model = "casperhansen/mpt-7b-8k-chat-gptq"
print('loading model...')
# load quantized model to the first GPU
tokenizer = AutoTokenizer.from_pretrained(quantized_model, use_fast=True)
model = AutoGPTQForCausalLM.from_quantized(quantized_model, device="cuda:0", trust_remote_code=True)
prompt_format = """<|im_start|>system
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.<|im_end|>
<|im_start|>user
{text}<|im_end|>
<|im_start|>assistant
"""
prompt = prompt_format.format(text="What is the difference between nuclear fusion and fission?")
print('generating...')
# or you can also use pipeline
streamer = TextStreamer(tokenizer, skip_special_tokens=True)
tokens = tokenizer(prompt, return_tensors="pt").to(model.device)
output = model.generate(**tokens, max_length=512, streamer=streamer)