|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:3853 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: BAAI/bge-base-en-v1.5 |
|
datasets: [] |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
widget: |
|
- source_sentence: '"BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS" < |
|
|
|
"BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS"' |
|
sentences: |
|
- What is the primary concept that the Discovery Server mechanism uses from the |
|
RTPS protocol? |
|
- What is the default state of the Verbosity Level component in the logging module? |
|
- What is the consequence of having a DataWriter kind that is lower than the DataReader |
|
kind in terms of DestinationOrderQosPolicy? |
|
- source_sentence: '+-----------------------------------------+-------------------------+--------------------------------------------------------+ |
|
|
|
| Data Member Name | Type | Default |
|
Value | |
|
|
|
|=========================================|=========================|========================================================| |
|
|
|
| "kind" | DurabilityQosPolicyKind | "VOLATILE_DURABILITY_QOS" |
|
for DataReaders | |
|
|
|
| | | "TRANSIENT_LOCAL_DURABILITY_QOS" |
|
for DataWriters | |
|
|
|
+-----------------------------------------+-------------------------+--------------------------------------------------------+' |
|
sentences: |
|
- What is the default value of the "kind" data member for a DataReader in the DurabilityQoSPolicy? |
|
- What is the main concept of the SQL-like filter syntax used in ContentFilteredTopic |
|
API? |
|
- What is the purpose of the "<shared_dir>" value in the QoS configuration? |
|
- source_sentence: " git clone https://github.com/eProsima/Fast-DDS.git && cd\ |
|
\ Fast-DDS\n WORKSPACE=$PWD" |
|
sentences: |
|
- What is the primary function of the ThreadSettings parameter in the context of |
|
Fast DDS thread creation? |
|
- What is the primary requirement for installing eProsima Fast DDS library on QNX |
|
7.1 from sources? |
|
- What's the purpose of the "max_handshake_requests" property in the context of |
|
authentication handshake settings? |
|
- source_sentence: 'This QoS Policy allows the configuration of the wire protocol. |
|
See |
|
|
|
"WireProtocolConfigQos".' |
|
sentences: |
|
- What is the primary purpose of the WireProtocolConfigQos policy in a DDS (Data |
|
Distribution Service) system? |
|
- What determines when a DataWriter sends consecutive liveliness messages, according |
|
to the LivelinessQosPolicy? |
|
- What is the purpose of the LivelinessQosPolicy in a DataReader's QoS settings? |
|
- source_sentence: "* \"AUTOMATIC_LIVELINESS_QOS\": The service takes the responsibility\ |
|
\ for\n renewing the leases at the required rates, as long as the local\n process\ |
|
\ where the participant is running and the link connecting it\n to remote participants\ |
|
\ exists, the entities within the remote\n participant will be considered alive.\ |
|
\ This kind is suitable for\n applications that only need to detect whether a\ |
|
\ remote application\n is still running." |
|
sentences: |
|
- What is the primary mechanism used by the service to ensure that a particular |
|
entity on the network remains considered "alive" when using the LivelinessQosPolicy |
|
with the "AUTOMATIC_ LIVELINESS_ QOS" kind? |
|
- What is the purpose of creating a "DomainParticipant" in the context of monitoring |
|
application development? |
|
- What is the purpose of loading an XML profiles file before creating entities in |
|
Fast DDS? |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: Fine tuning poc1-5e |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.3333333333333333 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.49184149184149184 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.5524475524475524 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.6247086247086248 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.3333333333333333 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.16394716394716394 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.11048951048951047 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.06247086247086246 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.3333333333333333 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.49184149184149184 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.5524475524475524 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.6247086247086248 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.4719611229721751 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.4239057239057238 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.43117995796594344 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.331002331002331 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.48717948717948717 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.5454545454545454 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.62004662004662 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.331002331002331 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.16239316239316237 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.10909090909090909 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.062004662004662 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.331002331002331 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.48717948717948717 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.5454545454545454 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.62004662004662 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.46621244210597373 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.4178830428830428 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.42502313070898473 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.31002331002331 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.4731934731934732 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.5431235431235432 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.6083916083916084 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.31002331002331 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.1577311577311577 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.1086247086247086 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.060839160839160834 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.31002331002331 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.4731934731934732 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.5431235431235432 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.6083916083916084 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.4519785373832247 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.4023217523217523 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.4106739429542078 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.30303030303030304 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.46386946386946387 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.5268065268065268 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.5967365967365967 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.30303030303030304 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.15462315462315462 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.10536130536130535 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.05967365967365966 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.30303030303030304 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.46386946386946387 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.5268065268065268 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.5967365967365967 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.44299689615589044 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.39438801938801926 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.4031610579311292 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.27972027972027974 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.4289044289044289 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.49417249417249415 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.5641025641025641 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.27972027972027974 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.14296814296814295 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.09883449883449884 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.05641025641025641 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.27972027972027974 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.4289044289044289 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.49417249417249415 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.5641025641025641 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.41745494156327173 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.37105672105672094 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.3800930218379113 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# Fine tuning poc1-5e |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("cferreiragonz/bge-base-fastdds-questions-5b-epochs") |
|
# Run inference |
|
sentences = [ |
|
'* "AUTOMATIC_LIVELINESS_QOS": The service takes the responsibility for\n renewing the leases at the required rates, as long as the local\n process where the participant is running and the link connecting it\n to remote participants exists, the entities within the remote\n participant will be considered alive. This kind is suitable for\n applications that only need to detect whether a remote application\n is still running.', |
|
'What is the primary mechanism used by the service to ensure that a particular entity on the network remains considered "alive" when using the LivelinessQosPolicy with the "AUTOMATIC_ LIVELINESS_ QOS" kind?', |
|
'What is the purpose of loading an XML profiles file before creating entities in Fast DDS?', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_768` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.3333 | |
|
| cosine_accuracy@3 | 0.4918 | |
|
| cosine_accuracy@5 | 0.5524 | |
|
| cosine_accuracy@10 | 0.6247 | |
|
| cosine_precision@1 | 0.3333 | |
|
| cosine_precision@3 | 0.1639 | |
|
| cosine_precision@5 | 0.1105 | |
|
| cosine_precision@10 | 0.0625 | |
|
| cosine_recall@1 | 0.3333 | |
|
| cosine_recall@3 | 0.4918 | |
|
| cosine_recall@5 | 0.5524 | |
|
| cosine_recall@10 | 0.6247 | |
|
| cosine_ndcg@10 | 0.472 | |
|
| cosine_mrr@10 | 0.4239 | |
|
| **cosine_map@100** | **0.4312** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_512` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| cosine_accuracy@1 | 0.331 | |
|
| cosine_accuracy@3 | 0.4872 | |
|
| cosine_accuracy@5 | 0.5455 | |
|
| cosine_accuracy@10 | 0.62 | |
|
| cosine_precision@1 | 0.331 | |
|
| cosine_precision@3 | 0.1624 | |
|
| cosine_precision@5 | 0.1091 | |
|
| cosine_precision@10 | 0.062 | |
|
| cosine_recall@1 | 0.331 | |
|
| cosine_recall@3 | 0.4872 | |
|
| cosine_recall@5 | 0.5455 | |
|
| cosine_recall@10 | 0.62 | |
|
| cosine_ndcg@10 | 0.4662 | |
|
| cosine_mrr@10 | 0.4179 | |
|
| **cosine_map@100** | **0.425** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_256` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.31 | |
|
| cosine_accuracy@3 | 0.4732 | |
|
| cosine_accuracy@5 | 0.5431 | |
|
| cosine_accuracy@10 | 0.6084 | |
|
| cosine_precision@1 | 0.31 | |
|
| cosine_precision@3 | 0.1577 | |
|
| cosine_precision@5 | 0.1086 | |
|
| cosine_precision@10 | 0.0608 | |
|
| cosine_recall@1 | 0.31 | |
|
| cosine_recall@3 | 0.4732 | |
|
| cosine_recall@5 | 0.5431 | |
|
| cosine_recall@10 | 0.6084 | |
|
| cosine_ndcg@10 | 0.452 | |
|
| cosine_mrr@10 | 0.4023 | |
|
| **cosine_map@100** | **0.4107** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_128` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.303 | |
|
| cosine_accuracy@3 | 0.4639 | |
|
| cosine_accuracy@5 | 0.5268 | |
|
| cosine_accuracy@10 | 0.5967 | |
|
| cosine_precision@1 | 0.303 | |
|
| cosine_precision@3 | 0.1546 | |
|
| cosine_precision@5 | 0.1054 | |
|
| cosine_precision@10 | 0.0597 | |
|
| cosine_recall@1 | 0.303 | |
|
| cosine_recall@3 | 0.4639 | |
|
| cosine_recall@5 | 0.5268 | |
|
| cosine_recall@10 | 0.5967 | |
|
| cosine_ndcg@10 | 0.443 | |
|
| cosine_mrr@10 | 0.3944 | |
|
| **cosine_map@100** | **0.4032** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_64` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.2797 | |
|
| cosine_accuracy@3 | 0.4289 | |
|
| cosine_accuracy@5 | 0.4942 | |
|
| cosine_accuracy@10 | 0.5641 | |
|
| cosine_precision@1 | 0.2797 | |
|
| cosine_precision@3 | 0.143 | |
|
| cosine_precision@5 | 0.0988 | |
|
| cosine_precision@10 | 0.0564 | |
|
| cosine_recall@1 | 0.2797 | |
|
| cosine_recall@3 | 0.4289 | |
|
| cosine_recall@5 | 0.4942 | |
|
| cosine_recall@10 | 0.5641 | |
|
| cosine_ndcg@10 | 0.4175 | |
|
| cosine_mrr@10 | 0.3711 | |
|
| **cosine_map@100** | **0.3801** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `gradient_accumulation_steps`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 5 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `tf32`: False |
|
- `load_best_model_at_end`: True |
|
- `optim`: adamw_torch_fused |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 16 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 5 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: False |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch_fused |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |
|
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| |
|
| 0.6639 | 10 | 5.0927 | - | - | - | - | - | |
|
| 0.9959 | 15 | - | 0.3916 | 0.3898 | 0.4021 | 0.3546 | 0.4027 | |
|
| 1.3278 | 20 | 3.3958 | - | - | - | - | - | |
|
| 1.9917 | 30 | 2.6034 | 0.3893 | 0.4034 | 0.4163 | 0.3719 | 0.4222 | |
|
| 2.6556 | 40 | 2.1012 | - | - | - | - | - | |
|
| 2.9876 | 45 | - | 0.3975 | 0.4085 | 0.4240 | 0.3780 | 0.4291 | |
|
| 3.3195 | 50 | 1.8189 | - | - | - | - | - | |
|
| **3.9834** | **60** | **1.715** | **0.4029** | **0.411** | **0.4236** | **0.3794** | **0.4288** | |
|
| 4.6473 | 70 | 1.6089 | - | - | - | - | - | |
|
| 4.9793 | 75 | - | 0.4032 | 0.4107 | 0.4250 | 0.3801 | 0.4312 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.13 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.1.2 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |